找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Linguistics and Intelligent Text Processing; 13th International C Alexander Gelbukh Conference proceedings 2012 Springer-Verl

[復制鏈接]
樓主: 適婚女孩
11#
發(fā)表于 2025-3-23 13:34:48 | 只看該作者
12#
發(fā)表于 2025-3-23 14:07:31 | 只看該作者
A Fast Subspace Text Categorization Method Using Parallel Classifiers speed up document search and reduce classifier training times. The data available to us is frequently divided into several broad domains with many sub-category levels. Each of these domains of data constitutes a subspace which can be processed separately. In this paper, separate classifiers of the
13#
發(fā)表于 2025-3-23 18:22:46 | 只看該作者
Research on Text Categorization Based on a Weakly-Supervised Transfer Learning Methoding classification tasks in new area. Instead, we can take use of the already tagged documents in other domains to accomplish the automatic categorization task. By extracting linguistic information such as part-of-speech, semantic, co-occurrence of keywords, we construct a domain-adaptive transfer k
14#
發(fā)表于 2025-3-24 01:16:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:25 | 只看該作者
Clustering Short Text and Its Evaluationication, a variety of short text could be defined mainly in terms of their length (e.g. sentence, paragraphs) and type (e.g. scientific papers, newspapers). Finding a clustering method that is able to cluster short text in general is difficult. In this paper, we cluster 4 different corpora with diff
16#
發(fā)表于 2025-3-24 07:55:35 | 只看該作者
17#
發(fā)表于 2025-3-24 12:18:28 | 只看該作者
Combining Flat and Structured Approaches for Temporal Slot Filling or: How Much to Compress?n and temporal aggregation. As in many other NLP tasks, a key challenge lies in capturing relations between text elements separated by a long context. We have observed that features derived from a structured text representation can help compressing the context and reducing ambiguity. On the other ha
18#
發(fā)表于 2025-3-24 18:01:51 | 只看該作者
19#
發(fā)表于 2025-3-24 19:44:43 | 只看該作者
Automatically Generated Noun Lexicons for Event Extraction, they can be interpreted in an eventive or non-eventive reading). Therefore, weights representing the relative “eventiveness” of a noun can help for disambiguating event detection in texts..We applied our method on both French and English corpora. Our method has been applied to both French and Engl
20#
發(fā)表于 2025-3-25 01:37:16 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 13:29
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
多伦县| 浦城县| 遂平县| 英山县| 长治市| 昌黎县| 绿春县| 宣城市| 阿巴嘎旗| 神木县| 云梦县| 全椒县| 曲水县| 济南市| 石屏县| 涿鹿县| 德江县| 克什克腾旗| 鄂尔多斯市| 凤城市| 汝南县| 南川市| 苗栗市| 成武县| 晴隆县| 伊金霍洛旗| 锡林郭勒盟| 旬阳县| 泽州县| 金湖县| 乾安县| 罗甸县| 开封市| 徐汇区| 贵南县| 右玉县| 台北市| 方正县| 定南县| 潮州市| 凤山县|