找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence in Data Mining; Proceedings of the I Himansu Sekhar Behera,Durga Prasad Mohapatra Conference proceedings 2017 Sp

[復(fù)制鏈接]
查看: 45893|回復(fù): 58
樓主
發(fā)表于 2025-3-21 17:21:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computational Intelligence in Data Mining
副標(biāo)題Proceedings of the I
編輯Himansu Sekhar Behera,Durga Prasad Mohapatra
視頻videohttp://file.papertrans.cn/233/232477/232477.mp4
概述Contains current research issues of developments of data mining and applications of computational intelligence methods.Provides attractive resource to meet new research challenges and problem findings
叢書(shū)名稱Advances in Intelligent Systems and Computing
圖書(shū)封面Titlebook: Computational Intelligence in Data Mining; Proceedings of the I Himansu Sekhar Behera,Durga Prasad Mohapatra Conference proceedings 2017 Sp
描述.The book presents high quality papers presented at the International Conference on Computational Intelligence in Data Mining (ICCIDM 2016) organized by School of Computer?Engineering, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India?during December 10 – 11, 2016. The book?disseminates the knowledge about innovative, active research directions in the field of data mining, machine and computational intelligence, along with current issues and applications of related topics. The volume aims to explicate and address the difficulties and challenges that of seamless integration of the two core disciplines of computer science.?.
出版日期Conference proceedings 2017
關(guān)鍵詞Computational Intelligence; CIDM 2016; ICCIDM; Conference Proceedings; Data Mining; Fuzzy Logic; Machine L
版次1
doihttps://doi.org/10.1007/978-981-10-3874-7
isbn_softcover978-981-10-3873-0
isbn_ebook978-981-10-3874-7Series ISSN 2194-5357 Series E-ISSN 2194-5365
issn_series 2194-5357
copyrightSpringer Nature Singapore Pte Ltd. 2017
The information of publication is updating

書(shū)目名稱Computational Intelligence in Data Mining影響因子(影響力)




書(shū)目名稱Computational Intelligence in Data Mining影響因子(影響力)學(xué)科排名




書(shū)目名稱Computational Intelligence in Data Mining網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computational Intelligence in Data Mining網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computational Intelligence in Data Mining被引頻次




書(shū)目名稱Computational Intelligence in Data Mining被引頻次學(xué)科排名




書(shū)目名稱Computational Intelligence in Data Mining年度引用




書(shū)目名稱Computational Intelligence in Data Mining年度引用學(xué)科排名




書(shū)目名稱Computational Intelligence in Data Mining讀者反饋




書(shū)目名稱Computational Intelligence in Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:10:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:23:14 | 只看該作者
Public Governance in Member States,h approaches may end up at developing artefacts, rendering the image unusable. Moreover these two classical approaches involve algorithmically complex tasks. On the other hand evolutionary soft computing methods claim to offer hassle free and effective contrast enhancement. In the present work, we r
地板
發(fā)表于 2025-3-22 06:09:09 | 只看該作者
5#
發(fā)表于 2025-3-22 09:11:44 | 只看該作者
6#
發(fā)表于 2025-3-22 13:07:17 | 只看該作者
https://doi.org/10.1007/978-3-8350-5406-6cial institution to minimize their misfortunes. Despite the fact that there are different statistical and artificial intelligent methods available, there is no single best strategy for credit risk prediction. In our work, we have used feature selection and feature extraction methods as preprocessing
7#
發(fā)表于 2025-3-22 19:48:36 | 只看該作者
8#
發(fā)表于 2025-3-22 22:15:20 | 只看該作者
Strategic Management in Islamic Financeliminate the noise from noisy image, one should know the noise type, noise level, noise distribution, etc. Typically noise level information is identified from noise standard deviation. Estimation of the image noise from the noisy image is major concern for several reasons. So, efficient and effecti
9#
發(fā)表于 2025-3-23 04:06:28 | 只看該作者
Summary and Concluding Remarks,al Foraging Optimization Algorithm (BFOA). Ordinary threading methods are computationally expensive, while extending for multilevel image thresholding, so there is a need of optimization techniques to reduce the computational time. Particle swarm optimization undergoes instability when particle velo
10#
發(fā)表于 2025-3-23 08:31:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 02:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云和县| 新龙县| 垦利县| 望谟县| 郸城县| 手机| 大方县| 忻州市| 金门县| 定南县| 纳雍县| 长乐市| 宜春市| 嫩江县| 光山县| 罗田县| 井冈山市| 信阳市| 新泰市| 聊城市| 鄱阳县| 庆安县| 永城市| 三门县| 大新县| 郴州市| 农安县| 和林格尔县| 新昌县| 阜南县| 札达县| 招远市| 海南省| 馆陶县| 南平市| 绍兴县| 乌海市| 深泽县| 集安市| 白山市| 台北县|