找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Intelligence in Data Mining; Proceedings of the I Himansu Sekhar Behera,Durga Prasad Mohapatra Conference proceedings 2017 Sp

[復制鏈接]
查看: 45901|回復: 58
樓主
發(fā)表于 2025-3-21 17:21:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computational Intelligence in Data Mining
副標題Proceedings of the I
編輯Himansu Sekhar Behera,Durga Prasad Mohapatra
視頻videohttp://file.papertrans.cn/233/232477/232477.mp4
概述Contains current research issues of developments of data mining and applications of computational intelligence methods.Provides attractive resource to meet new research challenges and problem findings
叢書名稱Advances in Intelligent Systems and Computing
圖書封面Titlebook: Computational Intelligence in Data Mining; Proceedings of the I Himansu Sekhar Behera,Durga Prasad Mohapatra Conference proceedings 2017 Sp
描述.The book presents high quality papers presented at the International Conference on Computational Intelligence in Data Mining (ICCIDM 2016) organized by School of Computer?Engineering, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India?during December 10 – 11, 2016. The book?disseminates the knowledge about innovative, active research directions in the field of data mining, machine and computational intelligence, along with current issues and applications of related topics. The volume aims to explicate and address the difficulties and challenges that of seamless integration of the two core disciplines of computer science.?.
出版日期Conference proceedings 2017
關鍵詞Computational Intelligence; CIDM 2016; ICCIDM; Conference Proceedings; Data Mining; Fuzzy Logic; Machine L
版次1
doihttps://doi.org/10.1007/978-981-10-3874-7
isbn_softcover978-981-10-3873-0
isbn_ebook978-981-10-3874-7Series ISSN 2194-5357 Series E-ISSN 2194-5365
issn_series 2194-5357
copyrightSpringer Nature Singapore Pte Ltd. 2017
The information of publication is updating

書目名稱Computational Intelligence in Data Mining影響因子(影響力)




書目名稱Computational Intelligence in Data Mining影響因子(影響力)學科排名




書目名稱Computational Intelligence in Data Mining網絡公開度




書目名稱Computational Intelligence in Data Mining網絡公開度學科排名




書目名稱Computational Intelligence in Data Mining被引頻次




書目名稱Computational Intelligence in Data Mining被引頻次學科排名




書目名稱Computational Intelligence in Data Mining年度引用




書目名稱Computational Intelligence in Data Mining年度引用學科排名




書目名稱Computational Intelligence in Data Mining讀者反饋




書目名稱Computational Intelligence in Data Mining讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:10:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:23:14 | 只看該作者
Public Governance in Member States,h approaches may end up at developing artefacts, rendering the image unusable. Moreover these two classical approaches involve algorithmically complex tasks. On the other hand evolutionary soft computing methods claim to offer hassle free and effective contrast enhancement. In the present work, we r
地板
發(fā)表于 2025-3-22 06:09:09 | 只看該作者
5#
發(fā)表于 2025-3-22 09:11:44 | 只看該作者
6#
發(fā)表于 2025-3-22 13:07:17 | 只看該作者
https://doi.org/10.1007/978-3-8350-5406-6cial institution to minimize their misfortunes. Despite the fact that there are different statistical and artificial intelligent methods available, there is no single best strategy for credit risk prediction. In our work, we have used feature selection and feature extraction methods as preprocessing
7#
發(fā)表于 2025-3-22 19:48:36 | 只看該作者
8#
發(fā)表于 2025-3-22 22:15:20 | 只看該作者
Strategic Management in Islamic Financeliminate the noise from noisy image, one should know the noise type, noise level, noise distribution, etc. Typically noise level information is identified from noise standard deviation. Estimation of the image noise from the noisy image is major concern for several reasons. So, efficient and effecti
9#
發(fā)表于 2025-3-23 04:06:28 | 只看該作者
Summary and Concluding Remarks,al Foraging Optimization Algorithm (BFOA). Ordinary threading methods are computationally expensive, while extending for multilevel image thresholding, so there is a need of optimization techniques to reduce the computational time. Particle swarm optimization undergoes instability when particle velo
10#
發(fā)表于 2025-3-23 08:31:45 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 07:52
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
望都县| 高阳县| 凤翔县| 宝兴县| 永顺县| 珠海市| 朝阳市| 修文县| 小金县| 南江县| 沅江市| 天柱县| 永新县| 东兰县| 澳门| 迁西县| 塔城市| 绵阳市| 哈尔滨市| 镇宁| 梁山县| 德昌县| 兴隆县| 天峻县| 嘉兴市| 永兴县| 深圳市| 巴中市| 竹北市| 天津市| 文登市| 精河县| 永清县| 兰溪市| 吴旗县| 大竹县| 拉萨市| 郴州市| 同江市| 房山区| 雷山县|