找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry - Methods, Algorithms and Applications; International Worksh H. Bieri,H. Noltemeier Conference proceedings 1991 Spri

[復(fù)制鏈接]
樓主: Orthosis
41#
發(fā)表于 2025-3-28 18:07:51 | 只看該作者
42#
發(fā)表于 2025-3-28 21:14:36 | 只看該作者
43#
發(fā)表于 2025-3-29 00:42:34 | 只看該作者
,Solving algebraic systems in Bernstein-Bézier representation,n of the coefficients. It is shown how this so-called Bézier representation can be used for the calculation of the solution manifold of algebraic systems. In this contribution, the manifold is represented by a hierarchy of cuts describing its complete topology. The location of the cuts is calculated
44#
發(fā)表于 2025-3-29 03:23:39 | 只看該作者
45#
發(fā)表于 2025-3-29 07:55:18 | 只看該作者
46#
發(fā)表于 2025-3-29 15:05:50 | 只看該作者
,Layout of flexible manufacturing systems — selected problems,more computational geometry and knowledge engineering point of view. This includes the representation of proximity properties as well as applications in the layout of assembly lines, in machine layout and in robot vision/ motion planning problems. Some recent results on monotonous bisector trees are
47#
發(fā)表于 2025-3-29 18:18:51 | 只看該作者
48#
發(fā)表于 2025-3-29 19:51:32 | 只看該作者
49#
發(fā)表于 2025-3-30 00:40:24 | 只看該作者
Conference proceedings 1991 March 21/22,1991.Computational geometry is not a precisely defined field.Often, it is understood as a nearly mathematical discipline,dealing mainly with complexity questionsconcerninggeometrical problems and algorithms. But often too,andperhaps increasingly, questions of more practical relevanceare
50#
發(fā)表于 2025-3-30 06:38:33 | 只看該作者
https://doi.org/10.1007/978-3-642-66252-2ns of the curve. The schemes are compared on several geometric operations including point inclusion, curve-curve intersection, curve-area intersection, and area-area intersection. It is shown that in most cases the arc tree is the most efficient representation scheme of the three evaluated.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沅江市| 四平市| 平陆县| 宽城| 富裕县| 盖州市| 潮安县| 秦皇岛市| 高安市| 昭觉县| 奎屯市| 兴隆县| 阿拉善盟| 玉门市| 海原县| 舟曲县| 海城市| 景东| 哈巴河县| 桦川县| 临城县| 柞水县| 县级市| 和平县| 石楼县| 壤塘县| 文成县| 贵定县| 和林格尔县| 鄂托克前旗| 石柱| 河西区| 石渠县| 拉孜县| 屏东市| 庆城县| 仁布县| 商洛市| 昭通市| 宁明县| 惠来县|