找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry - Methods, Algorithms and Applications; International Worksh H. Bieri,H. Noltemeier Conference proceedings 1991 Spri

[復(fù)制鏈接]
樓主: Orthosis
41#
發(fā)表于 2025-3-28 18:07:51 | 只看該作者
42#
發(fā)表于 2025-3-28 21:14:36 | 只看該作者
43#
發(fā)表于 2025-3-29 00:42:34 | 只看該作者
,Solving algebraic systems in Bernstein-Bézier representation,n of the coefficients. It is shown how this so-called Bézier representation can be used for the calculation of the solution manifold of algebraic systems. In this contribution, the manifold is represented by a hierarchy of cuts describing its complete topology. The location of the cuts is calculated
44#
發(fā)表于 2025-3-29 03:23:39 | 只看該作者
45#
發(fā)表于 2025-3-29 07:55:18 | 只看該作者
46#
發(fā)表于 2025-3-29 15:05:50 | 只看該作者
,Layout of flexible manufacturing systems — selected problems,more computational geometry and knowledge engineering point of view. This includes the representation of proximity properties as well as applications in the layout of assembly lines, in machine layout and in robot vision/ motion planning problems. Some recent results on monotonous bisector trees are
47#
發(fā)表于 2025-3-29 18:18:51 | 只看該作者
48#
發(fā)表于 2025-3-29 19:51:32 | 只看該作者
49#
發(fā)表于 2025-3-30 00:40:24 | 只看該作者
Conference proceedings 1991 March 21/22,1991.Computational geometry is not a precisely defined field.Often, it is understood as a nearly mathematical discipline,dealing mainly with complexity questionsconcerninggeometrical problems and algorithms. But often too,andperhaps increasingly, questions of more practical relevanceare
50#
發(fā)表于 2025-3-30 06:38:33 | 只看該作者
https://doi.org/10.1007/978-3-642-66252-2ns of the curve. The schemes are compared on several geometric operations including point inclusion, curve-curve intersection, curve-area intersection, and area-area intersection. It is shown that in most cases the arc tree is the most efficient representation scheme of the three evaluated.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄯善县| 白河县| 大兴区| 石首市| 中卫市| 平南县| 吉林市| 曲沃县| 万全县| 舒兰市| 博白县| 尚志市| 台中县| 福泉市| 太和县| 榆树市| 凤山县| 吉水县| 绥棱县| 古浪县| 六枝特区| 涪陵区| 东阿县| 泾川县| 邛崃市| 方山县| 神农架林区| 通海县| 江门市| 武宁县| 莱芜市| 永宁县| 靖宇县| 云浮市| 湟源县| 双辽市| 论坛| 伊金霍洛旗| 大丰市| 芦溪县| 泰安市|