找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry - Methods, Algorithms and Applications; International Worksh H. Bieri,H. Noltemeier Conference proceedings 1991 Spri

[復(fù)制鏈接]
樓主: Orthosis
21#
發(fā)表于 2025-3-25 04:26:19 | 只看該作者
22#
發(fā)表于 2025-3-25 09:28:31 | 只看該作者
https://doi.org/10.1007/978-3-030-48306-7tation of production-quality library programs. This paper introduces the components of this programming environment and gives some implementation details. The system is implemented in an object oriented extension of Pascal on the Apple Macintosh computer. We report our experience with object oriente
23#
發(fā)表于 2025-3-25 13:24:57 | 只看該作者
24#
發(fā)表于 2025-3-25 18:07:34 | 只看該作者
https://doi.org/10.1007/978-3-030-20922-3more computational geometry and knowledge engineering point of view. This includes the representation of proximity properties as well as applications in the layout of assembly lines, in machine layout and in robot vision/ motion planning problems. Some recent results on monotonous bisector trees are
25#
發(fā)表于 2025-3-25 23:48:31 | 只看該作者
https://doi.org/10.1007/978-3-030-20922-3fine a Voronoi diagram which also changes continuously, except for certain critical instances — so-called ...In [Ro 90], an efficient method is presented of . the Voronoi diagram over time. Recently Guibas, Mitchell and Roos [GuMiRo 91] improved the trivial quartic upper bound on the number of topol
26#
發(fā)表于 2025-3-26 01:13:38 | 只看該作者
27#
發(fā)表于 2025-3-26 05:41:46 | 只看該作者
28#
發(fā)表于 2025-3-26 08:58:17 | 只看該作者
29#
發(fā)表于 2025-3-26 15:54:45 | 只看該作者
An optimal algorithm for approximating a set of rectangles by two minimum area rectangles,ing isothetic rectangles. We propose an .(n log .) time algorithm for finding, given a set . of . isothetic rectangles, a pair of isothetic rectangles (.) such that . and . enclose all rectangles of . and area(s) + area(t) is minimal. Moreover we prove an .(n log .) lower bound for the one-dimensional version of the problem.
30#
發(fā)表于 2025-3-26 19:55:58 | 只看該作者
Computing the rectilinear link diameter of a polygon,omputing the geodesic diameter and the link diameter for a polygon..We consider the rectilinear case of this problem and give a linear time algorithm to compute the rectilinear link diameter of a simple rectilinear polygon. To our knowledge this is the first optimal algorithm for the diameter problem of non-trivial classes of polygons.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东至县| 永川市| 舞阳县| 江油市| 嘉定区| 肇东市| 忻城县| 腾冲县| 晋宁县| 墨脱县| 旅游| 常熟市| 汝南县| 益阳市| 晴隆县| 泸州市| 彩票| 德兴市| 如东县| 和政县| 贡嘎县| 赫章县| 沾益县| 龙海市| 南开区| 英吉沙县| 巫溪县| 瑞金市| 温宿县| 舞阳县| 潼关县| 湘阴县| 晋州市| 宜黄县| 永福县| 永宁县| 沙坪坝区| 平江县| 光山县| 秭归县| 湛江市|