找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry - Methods, Algorithms and Applications; International Worksh H. Bieri,H. Noltemeier Conference proceedings 1991 Spri

[復(fù)制鏈接]
樓主: Orthosis
21#
發(fā)表于 2025-3-25 04:26:19 | 只看該作者
22#
發(fā)表于 2025-3-25 09:28:31 | 只看該作者
https://doi.org/10.1007/978-3-030-48306-7tation of production-quality library programs. This paper introduces the components of this programming environment and gives some implementation details. The system is implemented in an object oriented extension of Pascal on the Apple Macintosh computer. We report our experience with object oriente
23#
發(fā)表于 2025-3-25 13:24:57 | 只看該作者
24#
發(fā)表于 2025-3-25 18:07:34 | 只看該作者
https://doi.org/10.1007/978-3-030-20922-3more computational geometry and knowledge engineering point of view. This includes the representation of proximity properties as well as applications in the layout of assembly lines, in machine layout and in robot vision/ motion planning problems. Some recent results on monotonous bisector trees are
25#
發(fā)表于 2025-3-25 23:48:31 | 只看該作者
https://doi.org/10.1007/978-3-030-20922-3fine a Voronoi diagram which also changes continuously, except for certain critical instances — so-called ...In [Ro 90], an efficient method is presented of . the Voronoi diagram over time. Recently Guibas, Mitchell and Roos [GuMiRo 91] improved the trivial quartic upper bound on the number of topol
26#
發(fā)表于 2025-3-26 01:13:38 | 只看該作者
27#
發(fā)表于 2025-3-26 05:41:46 | 只看該作者
28#
發(fā)表于 2025-3-26 08:58:17 | 只看該作者
29#
發(fā)表于 2025-3-26 15:54:45 | 只看該作者
An optimal algorithm for approximating a set of rectangles by two minimum area rectangles,ing isothetic rectangles. We propose an .(n log .) time algorithm for finding, given a set . of . isothetic rectangles, a pair of isothetic rectangles (.) such that . and . enclose all rectangles of . and area(s) + area(t) is minimal. Moreover we prove an .(n log .) lower bound for the one-dimensional version of the problem.
30#
發(fā)表于 2025-3-26 19:55:58 | 只看該作者
Computing the rectilinear link diameter of a polygon,omputing the geodesic diameter and the link diameter for a polygon..We consider the rectilinear case of this problem and give a linear time algorithm to compute the rectilinear link diameter of a simple rectilinear polygon. To our knowledge this is the first optimal algorithm for the diameter problem of non-trivial classes of polygons.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
逊克县| 都江堰市| 中牟县| 皋兰县| 枣强县| 古浪县| 玛曲县| 喜德县| 曲麻莱县| 社旗县| 房产| 开封县| 革吉县| 敖汉旗| 北碚区| 图们市| 新闻| 丹阳市| 黑山县| 盐池县| 象州县| 吉林省| 汪清县| 灌阳县| 多伦县| 永丰县| 盈江县| 万荣县| 永新县| 尉氏县| 义乌市| 建始县| 海原县| 凤山市| 同德县| 大兴区| 三河市| 金坛市| 宜阳县| 衡阳县| 仁化县|