找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry - Methods, Algorithms and Applications; International Worksh H. Bieri,H. Noltemeier Conference proceedings 1991 Spri

[復(fù)制鏈接]
樓主: Orthosis
41#
發(fā)表于 2025-3-28 18:07:51 | 只看該作者
42#
發(fā)表于 2025-3-28 21:14:36 | 只看該作者
43#
發(fā)表于 2025-3-29 00:42:34 | 只看該作者
,Solving algebraic systems in Bernstein-Bézier representation,n of the coefficients. It is shown how this so-called Bézier representation can be used for the calculation of the solution manifold of algebraic systems. In this contribution, the manifold is represented by a hierarchy of cuts describing its complete topology. The location of the cuts is calculated
44#
發(fā)表于 2025-3-29 03:23:39 | 只看該作者
45#
發(fā)表于 2025-3-29 07:55:18 | 只看該作者
46#
發(fā)表于 2025-3-29 15:05:50 | 只看該作者
,Layout of flexible manufacturing systems — selected problems,more computational geometry and knowledge engineering point of view. This includes the representation of proximity properties as well as applications in the layout of assembly lines, in machine layout and in robot vision/ motion planning problems. Some recent results on monotonous bisector trees are
47#
發(fā)表于 2025-3-29 18:18:51 | 只看該作者
48#
發(fā)表于 2025-3-29 19:51:32 | 只看該作者
49#
發(fā)表于 2025-3-30 00:40:24 | 只看該作者
Conference proceedings 1991 March 21/22,1991.Computational geometry is not a precisely defined field.Often, it is understood as a nearly mathematical discipline,dealing mainly with complexity questionsconcerninggeometrical problems and algorithms. But often too,andperhaps increasingly, questions of more practical relevanceare
50#
發(fā)表于 2025-3-30 06:38:33 | 只看該作者
https://doi.org/10.1007/978-3-642-66252-2ns of the curve. The schemes are compared on several geometric operations including point inclusion, curve-curve intersection, curve-area intersection, and area-area intersection. It is shown that in most cases the arc tree is the most efficient representation scheme of the three evaluated.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌拉特前旗| 革吉县| 古田县| 凤山市| 从化市| 彰武县| 鄂尔多斯市| 新化县| 双流县| 苍山县| 邻水| 广东省| 宿州市| 五台县| 梅州市| 慈溪市| 行唐县| 辽宁省| 卢龙县| 福建省| 湟源县| 石渠县| 茶陵县| 明水县| 祥云县| 临邑县| 通渭县| 烟台市| 和平县| 建水县| 安福县| 吉隆县| 西宁市| 扶余县| 隆安县| 宜阳县| 洪江市| 临沭县| 保康县| 永平县| 蓬溪县|