找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry - Methods, Algorithms and Applications; International Worksh H. Bieri,H. Noltemeier Conference proceedings 1991 Spri

[復(fù)制鏈接]
樓主: Orthosis
41#
發(fā)表于 2025-3-28 18:07:51 | 只看該作者
42#
發(fā)表于 2025-3-28 21:14:36 | 只看該作者
43#
發(fā)表于 2025-3-29 00:42:34 | 只看該作者
,Solving algebraic systems in Bernstein-Bézier representation,n of the coefficients. It is shown how this so-called Bézier representation can be used for the calculation of the solution manifold of algebraic systems. In this contribution, the manifold is represented by a hierarchy of cuts describing its complete topology. The location of the cuts is calculated
44#
發(fā)表于 2025-3-29 03:23:39 | 只看該作者
45#
發(fā)表于 2025-3-29 07:55:18 | 只看該作者
46#
發(fā)表于 2025-3-29 15:05:50 | 只看該作者
,Layout of flexible manufacturing systems — selected problems,more computational geometry and knowledge engineering point of view. This includes the representation of proximity properties as well as applications in the layout of assembly lines, in machine layout and in robot vision/ motion planning problems. Some recent results on monotonous bisector trees are
47#
發(fā)表于 2025-3-29 18:18:51 | 只看該作者
48#
發(fā)表于 2025-3-29 19:51:32 | 只看該作者
49#
發(fā)表于 2025-3-30 00:40:24 | 只看該作者
Conference proceedings 1991 March 21/22,1991.Computational geometry is not a precisely defined field.Often, it is understood as a nearly mathematical discipline,dealing mainly with complexity questionsconcerninggeometrical problems and algorithms. But often too,andperhaps increasingly, questions of more practical relevanceare
50#
發(fā)表于 2025-3-30 06:38:33 | 只看該作者
https://doi.org/10.1007/978-3-642-66252-2ns of the curve. The schemes are compared on several geometric operations including point inclusion, curve-curve intersection, curve-area intersection, and area-area intersection. It is shown that in most cases the arc tree is the most efficient representation scheme of the three evaluated.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹阳市| 宁德市| 泰和县| 阿拉善右旗| 旌德县| 绥棱县| 苗栗市| 论坛| 宁远县| 永丰县| 武威市| 铁岭市| 金沙县| 芦溪县| 华亭县| 敦化市| 集安市| 平湖市| 容城县| 江永县| 宁夏| 尖扎县| 南漳县| 定边县| 巴林左旗| 昭苏县| 普陀区| 从化市| 洛隆县| 布尔津县| 咸丰县| 巴南区| 永年县| 佳木斯市| 浦城县| 哈巴河县| 晋城| 苏尼特右旗| 花垣县| 襄城县| 潜江市|