找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry - Methods, Algorithms and Applications; International Worksh H. Bieri,H. Noltemeier Conference proceedings 1991 Spri

[復(fù)制鏈接]
樓主: Orthosis
41#
發(fā)表于 2025-3-28 18:07:51 | 只看該作者
42#
發(fā)表于 2025-3-28 21:14:36 | 只看該作者
43#
發(fā)表于 2025-3-29 00:42:34 | 只看該作者
,Solving algebraic systems in Bernstein-Bézier representation,n of the coefficients. It is shown how this so-called Bézier representation can be used for the calculation of the solution manifold of algebraic systems. In this contribution, the manifold is represented by a hierarchy of cuts describing its complete topology. The location of the cuts is calculated
44#
發(fā)表于 2025-3-29 03:23:39 | 只看該作者
45#
發(fā)表于 2025-3-29 07:55:18 | 只看該作者
46#
發(fā)表于 2025-3-29 15:05:50 | 只看該作者
,Layout of flexible manufacturing systems — selected problems,more computational geometry and knowledge engineering point of view. This includes the representation of proximity properties as well as applications in the layout of assembly lines, in machine layout and in robot vision/ motion planning problems. Some recent results on monotonous bisector trees are
47#
發(fā)表于 2025-3-29 18:18:51 | 只看該作者
48#
發(fā)表于 2025-3-29 19:51:32 | 只看該作者
49#
發(fā)表于 2025-3-30 00:40:24 | 只看該作者
Conference proceedings 1991 March 21/22,1991.Computational geometry is not a precisely defined field.Often, it is understood as a nearly mathematical discipline,dealing mainly with complexity questionsconcerninggeometrical problems and algorithms. But often too,andperhaps increasingly, questions of more practical relevanceare
50#
發(fā)表于 2025-3-30 06:38:33 | 只看該作者
https://doi.org/10.1007/978-3-642-66252-2ns of the curve. The schemes are compared on several geometric operations including point inclusion, curve-curve intersection, curve-area intersection, and area-area intersection. It is shown that in most cases the arc tree is the most efficient representation scheme of the three evaluated.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双辽市| 安达市| 嵊泗县| 安岳县| 尼勒克县| 镇远县| 厦门市| 施秉县| 铁岭县| 东辽县| 颍上县| 合阳县| 塔城市| 北辰区| 通道| 大港区| 胶南市| 峨眉山市| 昔阳县| 绍兴市| 饶平县| 阿城市| 徐州市| 辉县市| 祥云县| 沁源县| 额尔古纳市| 郯城县| 新津县| 桂林市| 玛多县| 天全县| 巧家县| 富蕴县| 江孜县| 丰宁| 石渠县| 达州市| 甘孜县| 将乐县| 正蓝旗|