找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry - Methods, Algorithms and Applications; International Worksh H. Bieri,H. Noltemeier Conference proceedings 1991 Spri

[復(fù)制鏈接]
樓主: Orthosis
21#
發(fā)表于 2025-3-25 04:26:19 | 只看該作者
22#
發(fā)表于 2025-3-25 09:28:31 | 只看該作者
https://doi.org/10.1007/978-3-030-48306-7tation of production-quality library programs. This paper introduces the components of this programming environment and gives some implementation details. The system is implemented in an object oriented extension of Pascal on the Apple Macintosh computer. We report our experience with object oriente
23#
發(fā)表于 2025-3-25 13:24:57 | 只看該作者
24#
發(fā)表于 2025-3-25 18:07:34 | 只看該作者
https://doi.org/10.1007/978-3-030-20922-3more computational geometry and knowledge engineering point of view. This includes the representation of proximity properties as well as applications in the layout of assembly lines, in machine layout and in robot vision/ motion planning problems. Some recent results on monotonous bisector trees are
25#
發(fā)表于 2025-3-25 23:48:31 | 只看該作者
https://doi.org/10.1007/978-3-030-20922-3fine a Voronoi diagram which also changes continuously, except for certain critical instances — so-called ...In [Ro 90], an efficient method is presented of . the Voronoi diagram over time. Recently Guibas, Mitchell and Roos [GuMiRo 91] improved the trivial quartic upper bound on the number of topol
26#
發(fā)表于 2025-3-26 01:13:38 | 只看該作者
27#
發(fā)表于 2025-3-26 05:41:46 | 只看該作者
28#
發(fā)表于 2025-3-26 08:58:17 | 只看該作者
29#
發(fā)表于 2025-3-26 15:54:45 | 只看該作者
An optimal algorithm for approximating a set of rectangles by two minimum area rectangles,ing isothetic rectangles. We propose an .(n log .) time algorithm for finding, given a set . of . isothetic rectangles, a pair of isothetic rectangles (.) such that . and . enclose all rectangles of . and area(s) + area(t) is minimal. Moreover we prove an .(n log .) lower bound for the one-dimensional version of the problem.
30#
發(fā)表于 2025-3-26 19:55:58 | 只看該作者
Computing the rectilinear link diameter of a polygon,omputing the geodesic diameter and the link diameter for a polygon..We consider the rectilinear case of this problem and give a linear time algorithm to compute the rectilinear link diameter of a simple rectilinear polygon. To our knowledge this is the first optimal algorithm for the diameter problem of non-trivial classes of polygons.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵溪市| 河间市| 瑞昌市| 京山县| 福贡县| 营山县| 连城县| 出国| 屏边| 彰化县| 黄龙县| 衡阳县| 永年县| 桑日县| 安丘市| 临江市| 囊谦县| 徐闻县| 洛阳市| 阜城县| 堆龙德庆县| 利辛县| 敦煌市| 池州市| 确山县| 陆良县| 福州市| 中宁县| 宜章县| 库尔勒市| 汶川县| 太保市| 漳州市| 兴仁县| 汉沽区| 平舆县| 洛阳市| 平度市| 河池市| 乌鲁木齐县| 抚宁县|