找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry on Surfaces; Performing Computati Clara I. Grima,Alberto Márquez Book 2001 Springer Science+Business Media Dordrecht

[復(fù)制鏈接]
樓主: Heel-Spur
11#
發(fā)表于 2025-3-23 10:01:06 | 只看該作者
https://doi.org/10.1007/978-1-4419-8857-7n or of a set of sites. A triangulation is a partition of the domain defined by the input into triangles which meet only at shared sides. Since this kind of meshes are needed in all domains where the ambient space must be discretized, this structure must be studied on surfaces in addition to the pla
12#
發(fā)表于 2025-3-23 14:28:09 | 只看該作者
13#
發(fā)表于 2025-3-23 21:51:57 | 只看該作者
R. Rodrigues,M. A. Santos,F. N. Correiatheory and in many other applications. In this chapter we study such parameters in the cases of our surfaces. We will see that the usual planar techniques for computing those invariants are not valid in this case and that new methods must be considered.
14#
發(fā)表于 2025-3-24 00:53:25 | 只看該作者
https://doi.org/10.1007/978-1-4419-8857-7n or of a set of sites. A triangulation is a partition of the domain defined by the input into triangles which meet only at shared sides. Since this kind of meshes are needed in all domains where the ambient space must be discretized, this structure must be studied on surfaces in addition to the plane.
15#
發(fā)表于 2025-3-24 02:44:30 | 只看該作者
Voronoi Diagrams,hull. Without doubt the reason for this assessment is that Voronoi diagrams have applications and are used extensively in a great variety of disciplines (see [Aurenhammer, 1991, Okabe et al., 1992]). So it is possible to say that the Voronoi diagram is an interdisciplinary concept, and, in fact, it has independent roots in many fields.
16#
發(fā)表于 2025-3-24 07:38:04 | 只看該作者
17#
發(fā)表于 2025-3-24 13:57:15 | 只看該作者
18#
發(fā)表于 2025-3-24 17:52:26 | 只看該作者
Euclidean Position,ively think that planar methods will be valid in this Situation. This intuition has been used on several occasions by many authors, but sometimes it is not clear what ‘very close to each other’ means. In this chapter we will try to clarify this concept, introducing what we call Euclidean position, i
19#
發(fā)表于 2025-3-24 22:40:02 | 只看該作者
20#
發(fā)表于 2025-3-25 02:28:36 | 只看該作者
Voronoi Diagrams,hull. Without doubt the reason for this assessment is that Voronoi diagrams have applications and are used extensively in a great variety of disciplines (see [Aurenhammer, 1991, Okabe et al., 1992]). So it is possible to say that the Voronoi diagram is an interdisciplinary concept, and, in fact, it
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
错那县| 乌恰县| 临城县| 顺昌县| 隆尧县| 方城县| 墨江| 遂昌县| 云浮市| 汝城县| 甘孜县| 曲麻莱县| 南和县| 塔城市| 都安| 五原县| 太仆寺旗| 巴彦县| 财经| 聂荣县| 凌云县| 芜湖市| 井陉县| 达尔| 惠来县| 连山| 顺昌县| 祁连县| 乐昌市| 普兰店市| 鲁山县| 沙田区| 固阳县| 华坪县| 社旗县| 恩施市| 盐源县| 鄂伦春自治旗| 吉木乃县| 峡江县| 桐柏县|