找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Geometry on Surfaces; Performing Computati Clara I. Grima,Alberto Márquez Book 2001 Springer Science+Business Media Dordrecht

[復(fù)制鏈接]
查看: 19513|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:18:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computational Geometry on Surfaces
副標(biāo)題Performing Computati
編輯Clara I. Grima,Alberto Márquez
視頻videohttp://file.papertrans.cn/233/232333/232333.mp4
圖書(shū)封面Titlebook: Computational Geometry on Surfaces; Performing Computati Clara I. Grima,Alberto Márquez Book 2001 Springer Science+Business Media Dordrecht
描述In the last thirty years Computational Geometry has emerged as a new discipline from the field of design and analysis of algorithms. That dis- cipline studies geometric problems from a computational point of view, and it has attracted enormous research interest. But that interest is mostly concerned with Euclidean Geometry (mainly the plane or Eu- clidean 3-dimensional space). Of course, there are some important rea- sons for this occurrence since the first applieations and the bases of all developments are in the plane or in 3-dimensional space. But, we can find also some exceptions, and so Voronoi diagrams on the sphere, cylin- der, the cone, and the torus have been considered previously, and there are manY works on triangulations on the sphere and other surfaces. The exceptions mentioned in the last paragraph have appeared to try to answer some quest ions which arise in the growing list of areas in which the results of Computational Geometry are applicable, since, in practiee, many situations in those areas lead to problems of Com- putational Geometry on surfaces (probably the sphere and the cylinder are the most common examples). We can mention here some specific areas in which
出版日期Book 2001
關(guān)鍵詞Triangulation; algorithms; calculus; combinatorics; complexity; computational geometry; computer; computer
版次1
doihttps://doi.org/10.1007/978-94-015-9809-5
isbn_softcover978-90-481-5908-6
isbn_ebook978-94-015-9809-5
copyrightSpringer Science+Business Media Dordrecht 2001
The information of publication is updating

書(shū)目名稱Computational Geometry on Surfaces影響因子(影響力)




書(shū)目名稱Computational Geometry on Surfaces影響因子(影響力)學(xué)科排名




書(shū)目名稱Computational Geometry on Surfaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computational Geometry on Surfaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computational Geometry on Surfaces被引頻次




書(shū)目名稱Computational Geometry on Surfaces被引頻次學(xué)科排名




書(shū)目名稱Computational Geometry on Surfaces年度引用




書(shū)目名稱Computational Geometry on Surfaces年度引用學(xué)科排名




書(shū)目名稱Computational Geometry on Surfaces讀者反饋




書(shū)目名稱Computational Geometry on Surfaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:34:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:00:10 | 只看該作者
Preliminaries,Obviously, in a book like this the reader is usually familiarized with concepts and (some) results of Computational Geometry. In any case, we will try to make this book as self-contained as possible. So we introduce in this chapter some terminologies and notations that will be used along the book.
地板
發(fā)表于 2025-3-22 05:36:37 | 只看該作者
5#
發(fā)表于 2025-3-22 11:19:21 | 只看該作者
978-90-481-5908-6Springer Science+Business Media Dordrecht 2001
6#
發(fā)表于 2025-3-22 14:13:58 | 只看該作者
Savvas G. Loizou,Kostas J. Kyriakopoulosively think that planar methods will be valid in this Situation. This intuition has been used on several occasions by many authors, but sometimes it is not clear what ‘very close to each other’ means. In this chapter we will try to clarify this concept, introducing what we call Euclidean position, i
7#
發(fā)表于 2025-3-22 18:42:12 | 只看該作者
8#
發(fā)表于 2025-3-22 22:43:00 | 只看該作者
Aggregation and Disaggregation Modellinghull. Without doubt the reason for this assessment is that Voronoi diagrams have applications and are used extensively in a great variety of disciplines (see [Aurenhammer, 1991, Okabe et al., 1992]). So it is possible to say that the Voronoi diagram is an interdisciplinary concept, and, in fact, it
9#
發(fā)表于 2025-3-23 03:14:56 | 只看該作者
R. Rodrigues,M. A. Santos,F. N. Correiatheory and in many other applications. In this chapter we study such parameters in the cases of our surfaces. We will see that the usual planar techniques for computing those invariants are not valid in this case and that new methods must be considered.
10#
發(fā)表于 2025-3-23 05:57:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安龙县| 富川| 平凉市| 边坝县| 卫辉市| 沙河市| 微山县| 河间市| 昌乐县| 沙田区| 南皮县| 桐梓县| 商洛市| 同德县| 牟定县| 略阳县| 镇雄县| 项城市| 闽清县| 全椒县| 多伦县| 凯里市| 兴城市| 达日县| 太和县| 凉山| 荆州市| 双鸭山市| 西城区| 新乡市| 眉山市| 得荣县| 辽中县| 娄底市| 高碑店市| 三门峡市| 山丹县| 嵩明县| 定结县| 科技| 垣曲县|