找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Fluid Dynamics; Finite Difference Me Guoxiang Hou,Caikan Chen,Kai Wang Book 2024 The Editor(s) (if applicable) and The Author

[復制鏈接]
樓主: Eschew
41#
發(fā)表于 2025-3-28 17:11:25 | 只看該作者
42#
發(fā)表于 2025-3-28 21:49:48 | 只看該作者
A Simplified Lattice Boltzmann Flux Solver of Multiphase Flowsg the numerical accuracy and stability of the original MLBFS. We test the simplified MLBFS on the Laplace law and the Rayleigh–Taylor instability problems and show that it can reduce the computation time by up to 18.32% compared to the original method.
43#
發(fā)表于 2025-3-29 00:04:27 | 只看該作者
44#
發(fā)表于 2025-3-29 04:48:46 | 只看該作者
The Compatibility, Convergence, and Stability of Difference Schemesete perturbation method, energy method, and Hirt heuristic method, to analyse the numerical stability. Besides, a simple method using difference operator transform to calculate the transition factor is proposed, and an adequate discussion about various forms of stability conditions and the Lax equivalence theorem is given.
45#
發(fā)表于 2025-3-29 08:20:40 | 只看該作者
Variable Coefficients and Nonlinear Problems. For the nonlinear partial differential equations, stability analysis and error estimation for nonlinear problems are more complex than linear problems. At the end of this chapter, the conservative difference scheme is discussed and analyzed using the controlling volume method based on the physical conservation law.
46#
發(fā)表于 2025-3-29 12:37:10 | 只看該作者
47#
發(fā)表于 2025-3-29 16:18:19 | 只看該作者
48#
發(fā)表于 2025-3-29 22:00:25 | 只看該作者
Coupled Simplified Lattice Boltzmann Method Study on Thermal Flowsts. Four representative dimensionless heated lengths between 0 and 1, and typical temperature gradient orientations, namely vertical upward are selected to investigate the joint effects of the Richardson number, temperature gradient orientation, and length of the heat source on heat transfer.
49#
發(fā)表于 2025-3-30 03:21:52 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 23:19
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台山市| 喜德县| 临夏县| 余姚市| 祁门县| 古蔺县| 宾川县| 民乐县| 温泉县| 手游| 驻马店市| 万州区| 上思县| 邵阳市| 东明县| 寻甸| 和田县| 芒康县| 南充市| 田林县| 乐陵市| 司法| 汉川市| 北安市| 迭部县| 五原县| 贵州省| 淮北市| 辛集市| 射洪县| 银川市| 株洲市| 城步| 滕州市| 万荣县| 富民县| 舟曲县| 中西区| 金乡县| 水富县| 嵊州市|