找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Fluid Dynamics; Finite Difference Me Guoxiang Hou,Caikan Chen,Kai Wang Book 2024 The Editor(s) (if applicable) and The Author

[復制鏈接]
樓主: Eschew
41#
發(fā)表于 2025-3-28 17:11:25 | 只看該作者
42#
發(fā)表于 2025-3-28 21:49:48 | 只看該作者
A Simplified Lattice Boltzmann Flux Solver of Multiphase Flowsg the numerical accuracy and stability of the original MLBFS. We test the simplified MLBFS on the Laplace law and the Rayleigh–Taylor instability problems and show that it can reduce the computation time by up to 18.32% compared to the original method.
43#
發(fā)表于 2025-3-29 00:04:27 | 只看該作者
44#
發(fā)表于 2025-3-29 04:48:46 | 只看該作者
The Compatibility, Convergence, and Stability of Difference Schemesete perturbation method, energy method, and Hirt heuristic method, to analyse the numerical stability. Besides, a simple method using difference operator transform to calculate the transition factor is proposed, and an adequate discussion about various forms of stability conditions and the Lax equivalence theorem is given.
45#
發(fā)表于 2025-3-29 08:20:40 | 只看該作者
Variable Coefficients and Nonlinear Problems. For the nonlinear partial differential equations, stability analysis and error estimation for nonlinear problems are more complex than linear problems. At the end of this chapter, the conservative difference scheme is discussed and analyzed using the controlling volume method based on the physical conservation law.
46#
發(fā)表于 2025-3-29 12:37:10 | 只看該作者
47#
發(fā)表于 2025-3-29 16:18:19 | 只看該作者
48#
發(fā)表于 2025-3-29 22:00:25 | 只看該作者
Coupled Simplified Lattice Boltzmann Method Study on Thermal Flowsts. Four representative dimensionless heated lengths between 0 and 1, and typical temperature gradient orientations, namely vertical upward are selected to investigate the joint effects of the Richardson number, temperature gradient orientation, and length of the heat source on heat transfer.
49#
發(fā)表于 2025-3-30 03:21:52 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 23:19
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新乡市| 青神县| 梁河县| 刚察县| 唐山市| 台南市| 永嘉县| 柳江县| 泾源县| 武夷山市| 芒康县| 手机| 万全县| 包头市| 唐海县| 改则县| 台中市| 金沙县| 华阴市| 礼泉县| 汝南县| 山东省| 阿坝| 江城| 常宁市| 建阳市| 太仓市| 易门县| 永春县| 原平市| 清涧县| 晋城| 泸定县| 罗山县| 甘孜| 五莲县| 车致| 桓台县| 大关县| 鲜城| 乌兰浩特市|