找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Fluid Dynamics; Finite Difference Me Guoxiang Hou,Caikan Chen,Kai Wang Book 2024 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
查看: 14191|回復(fù): 48
樓主
發(fā)表于 2025-3-21 16:56:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Fluid Dynamics
副標(biāo)題Finite Difference Me
編輯Guoxiang Hou,Caikan Chen,Kai Wang
視頻videohttp://file.papertrans.cn/233/232291/232291.mp4
概述Details the operator transformation method in difference methods which is a unique one.Introduces several newly developing methods based on the Lattice Boltzmann Method in the second part of this book
叢書名稱Engineering Applications of Computational Methods
圖書封面Titlebook: Computational Fluid Dynamics; Finite Difference Me Guoxiang Hou,Caikan Chen,Kai Wang Book 2024 The Editor(s) (if applicable) and The Author
描述.This book provides a concise and comprehensive introduction to several basic methods with more attention to their theoretical basis and applications in fluid dynamics. Furthermore, some new ideas are presented in this book, for example, a method to solve the transition matrix by difference operator transformation. For this method, the book gives the definition of Fourier integral transformation of translation operator, and proves the transition matrix equaling to the differential operator transformation, so that it is extended to general situations of explicit, implicit, multi-layer difference equations, etc. This flexible approach is also used in the differential part. In addition, the book also includes six types of equivalent stability definitions in two ways and deeply analyzes their errors, stabilities and convergences of the difference equations. What is more important, some new scientific contributions on lattice Boltzmann method (LBM) in recent years are presented in the book as well. The authors write the book combining their ten years teaching experience and research results and this book is intended for graduate students who are interested in the area of computational f
出版日期Book 2024
關(guān)鍵詞Computational Fluid Dynamics; Finite Difference Method; Lattice Boltzmann Method; Incompressible Flows;
版次1
doihttps://doi.org/10.1007/978-981-97-0349-4
isbn_softcover978-981-97-0351-7
isbn_ebook978-981-97-0349-4Series ISSN 2662-3366 Series E-ISSN 2662-3374
issn_series 2662-3366
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Computational Fluid Dynamics影響因子(影響力)




書目名稱Computational Fluid Dynamics影響因子(影響力)學(xué)科排名




書目名稱Computational Fluid Dynamics網(wǎng)絡(luò)公開(kāi)度




書目名稱Computational Fluid Dynamics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Computational Fluid Dynamics被引頻次




書目名稱Computational Fluid Dynamics被引頻次學(xué)科排名




書目名稱Computational Fluid Dynamics年度引用




書目名稱Computational Fluid Dynamics年度引用學(xué)科排名




書目名稱Computational Fluid Dynamics讀者反饋




書目名稱Computational Fluid Dynamics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:02:44 | 只看該作者
Therapie: Methoden und Konzeption,thods for constructing difference schemes are introduced, including Taylor series expansion, method of polynomial interpolation, being-determined coefficient method, integral methods, method?of?characteristics, and control volume method. We provide an example of a one-dimensional advection equation
板凳
發(fā)表于 2025-3-22 04:04:02 | 只看該作者
地板
發(fā)表于 2025-3-22 08:27:48 | 只看該作者
5#
發(fā)表于 2025-3-22 10:13:57 | 只看該作者
6#
發(fā)表于 2025-3-22 14:43:08 | 只看該作者
Therapie: Methoden und Konzeption,he variable coefficients in linear partial differential equations, if the coefficients of the equation are smooth functions, similar methods to the constant coefficient case can be used to construct difference schemes. The stability and convergence can be analyzed using the frozen coefficient method
7#
發(fā)表于 2025-3-22 19:37:33 | 只看該作者
8#
發(fā)表于 2025-3-23 00:09:25 | 只看該作者
9#
發(fā)表于 2025-3-23 04:22:17 | 只看該作者
10#
發(fā)表于 2025-3-23 09:28:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 06:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
小金县| 慈利县| 壶关县| 微博| 文安县| 永善县| 郓城县| 准格尔旗| 琼海市| 延边| 清镇市| 隆德县| 布尔津县| 隆子县| 石门县| 晋州市| 甘孜县| 交城县| 仲巴县| 台安县| 香港 | 深水埗区| 启东市| 金华市| 西丰县| 兴隆县| 石嘴山市| 绍兴县| 荆州市| 怀来县| 宁德市| 资阳市| 昌都县| 栾城县| 阿鲁科尔沁旗| 平南县| 福泉市| 屯昌县| 全南县| 崇左市| 松桃|