找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Fluid Dynamics; Finite Difference Me Guoxiang Hou,Caikan Chen,Kai Wang Book 2024 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: Eschew
41#
發(fā)表于 2025-3-28 17:11:25 | 只看該作者
42#
發(fā)表于 2025-3-28 21:49:48 | 只看該作者
A Simplified Lattice Boltzmann Flux Solver of Multiphase Flowsg the numerical accuracy and stability of the original MLBFS. We test the simplified MLBFS on the Laplace law and the Rayleigh–Taylor instability problems and show that it can reduce the computation time by up to 18.32% compared to the original method.
43#
發(fā)表于 2025-3-29 00:04:27 | 只看該作者
44#
發(fā)表于 2025-3-29 04:48:46 | 只看該作者
The Compatibility, Convergence, and Stability of Difference Schemesete perturbation method, energy method, and Hirt heuristic method, to analyse the numerical stability. Besides, a simple method using difference operator transform to calculate the transition factor is proposed, and an adequate discussion about various forms of stability conditions and the Lax equivalence theorem is given.
45#
發(fā)表于 2025-3-29 08:20:40 | 只看該作者
Variable Coefficients and Nonlinear Problems. For the nonlinear partial differential equations, stability analysis and error estimation for nonlinear problems are more complex than linear problems. At the end of this chapter, the conservative difference scheme is discussed and analyzed using the controlling volume method based on the physical conservation law.
46#
發(fā)表于 2025-3-29 12:37:10 | 只看該作者
47#
發(fā)表于 2025-3-29 16:18:19 | 只看該作者
48#
發(fā)表于 2025-3-29 22:00:25 | 只看該作者
Coupled Simplified Lattice Boltzmann Method Study on Thermal Flowsts. Four representative dimensionless heated lengths between 0 and 1, and typical temperature gradient orientations, namely vertical upward are selected to investigate the joint effects of the Richardson number, temperature gradient orientation, and length of the heat source on heat transfer.
49#
發(fā)表于 2025-3-30 03:21:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 06:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吐鲁番市| 安新县| 容城县| 招远市| 永兴县| 武义县| 宁陕县| 应城市| 伊宁市| 襄垣县| 瓮安县| 潮州市| 诸城市| 阿图什市| 阿鲁科尔沁旗| 皮山县| 南澳县| 贡山| 名山县| 叙永县| 克拉玛依市| 枣阳市| 长丰县| 台湾省| 当雄县| 上林县| 淅川县| 祥云县| 永清县| 西林县| 海阳市| 扶沟县| 鄂托克前旗| 禄丰县| 龙游县| 买车| 垫江县| 施甸县| 寿宁县| 封丘县| 温泉县|