找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Excursions in Analysis and Number Theory; Peter Borwein Book 2002 Springer Science+Business Media New York 2002 Diophantine

[復(fù)制鏈接]
樓主: FLAK
51#
發(fā)表于 2025-3-30 11:11:10 | 只看該作者
LLL and PSLQ,t finds a relatively short vector in an integer lattice. In this chapter we give some examples of how LLL can be used to approach some of the central problems of the book. Appendix B deals, in detail, with the LLL algorithm and the closely related PSLQ algorithm for finding integer relations. In man
52#
發(fā)表于 2025-3-30 13:06:05 | 只看該作者
53#
發(fā)表于 2025-3-30 19:31:24 | 只看該作者
54#
發(fā)表于 2025-3-30 21:11:10 | 只看該作者
The Integer Chebyshev Problem,rval. This is P1, and it is of a slightly different flavour than most of the other problems in this book, in that there is no restriction on the size of the coefficients. We now state P1 with greater precision.
55#
發(fā)表于 2025-3-31 04:13:41 | 只看該作者
,The Prouhet—Tarry—Escott Problem,ct lists (repeats are allowed) of integers [..,…,..] and [....] such that.We will call this the Prouhet-Tarry-Escott Problem. We call . the size of the solution and . the degree. We abbreviate the above system by writing.
56#
發(fā)表于 2025-3-31 08:33:05 | 只看該作者
57#
發(fā)表于 2025-3-31 13:12:47 | 只看該作者
58#
發(fā)表于 2025-3-31 16:13:42 | 只看該作者
The Littlewood Problem,e, and when . 〈 2 it asks how large the .. norm can be. In both cases we are interested in how close these norms can be to the L. norm. Recall that the .. norm of a Littlewood polynomial of degree . is . That the behaviour changes at . 2 is expected from ., which gives, for 1 ≤ . 00 and .. + ... 1,
59#
發(fā)表于 2025-3-31 18:14:09 | 只看該作者
60#
發(fā)表于 2025-3-31 22:01:11 | 只看該作者
Book 2018ion with cardiovascular disease but also many other diseases, from diabetesto hypertension, from cancer and thrombosis to neurodegenerative diseases, including dementia.?. .Examining those benefits in detail, this book offers a valuable educational tool for young professionals and caregivers, as wel
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西峡县| 金塔县| 左贡县| 信宜市| 尉犁县| 广河县| 大宁县| 兴仁县| 抚远县| 宜昌市| 图木舒克市| 江西省| 隆昌县| 白玉县| 巩留县| 旬邑县| 大关县| 西藏| 会泽县| 楚雄市| 金阳县| 淮阳县| 左权县| 墨玉县| 淮滨县| 道真| 衡东县| 揭阳市| 观塘区| 青阳县| 离岛区| 呼和浩特市| 易门县| 麦盖提县| 鹤岗市| 资阳市| 巴马| 滨海县| 宜都市| 漳平市| 黄陵县|