找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Excursions in Analysis and Number Theory; Peter Borwein Book 2002 Springer Science+Business Media New York 2002 Diophantine

[復(fù)制鏈接]
查看: 27432|回復(fù): 61
樓主
發(fā)表于 2025-3-21 17:26:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computational Excursions in Analysis and Number Theory
編輯Peter Borwein
視頻videohttp://file.papertrans.cn/233/232281/232281.mp4
叢書名稱CMS Books in Mathematics
圖書封面Titlebook: Computational Excursions in Analysis and Number Theory;  Peter Borwein Book 2002 Springer Science+Business Media New York 2002 Diophantine
描述This book is designed for a topics course in computational number theory. It is based around a number of difficult old problems that live at the interface of analysis and number theory. Some of these problems are the following: The Integer Chebyshev Problem. Find a nonzero polynomial of degree n with integer eoeffieients that has smallest possible supremum norm on the unit interval. Littlewood‘s Problem. Find a polynomial of degree n with eoeffieients in the set { + 1, -I} that has smallest possible supremum norm on the unit disko The Prouhet-Tarry-Escott Problem. Find a polynomial with integer co- effieients that is divisible by (z - l)n and has smallest possible 1 norm. (That 1 is, the sum of the absolute values of the eoeffieients is minimal.) Lehmer‘s Problem. Show that any monie polynomial p, p(O) i- 0, with in- teger coefficients that is irreducible and that is not a cyclotomic polynomial has Mahler measure at least 1.1762 .... All of the above problems are at least forty years old; all are presumably very hard, certainly none are completely solved; and alllend themselves to extensive computational explorations. The techniques for tackling these problems are various and inclu
出版日期Book 2002
關(guān)鍵詞Diophantine approximation; Maxima; algorithms; calculus; combinatorics; computational number theory; extre
版次1
doihttps://doi.org/10.1007/978-0-387-21652-2
isbn_softcover978-1-4419-3000-2
isbn_ebook978-0-387-21652-2Series ISSN 1613-5237 Series E-ISSN 2197-4152
issn_series 1613-5237
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書目名稱Computational Excursions in Analysis and Number Theory影響因子(影響力)




書目名稱Computational Excursions in Analysis and Number Theory影響因子(影響力)學(xué)科排名




書目名稱Computational Excursions in Analysis and Number Theory網(wǎng)絡(luò)公開度




書目名稱Computational Excursions in Analysis and Number Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Excursions in Analysis and Number Theory被引頻次




書目名稱Computational Excursions in Analysis and Number Theory被引頻次學(xué)科排名




書目名稱Computational Excursions in Analysis and Number Theory年度引用




書目名稱Computational Excursions in Analysis and Number Theory年度引用學(xué)科排名




書目名稱Computational Excursions in Analysis and Number Theory讀者反饋




書目名稱Computational Excursions in Analysis and Number Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:18:49 | 只看該作者
1613-5237 nly none are completely solved; and alllend themselves to extensive computational explorations. The techniques for tackling these problems are various and inclu978-1-4419-3000-2978-0-387-21652-2Series ISSN 1613-5237 Series E-ISSN 2197-4152
板凳
發(fā)表于 2025-3-22 01:49:46 | 只看該作者
Computational Excursions in Analysis and Number Theory
地板
發(fā)表于 2025-3-22 08:35:38 | 只看該作者
5#
發(fā)表于 2025-3-22 10:00:26 | 只看該作者
Die Stiftungsidee und ihre Umsetzung,y monic polynomial with integer coefficients. A real algebraic integer . is a . if all its conjugate roots have modulus strictly less than 1. A real algebraic integer . is a . if all its conjugate roots have modulus at most 1, and at least one (and hence (see E2) all but one) of the conjugate roots
6#
發(fā)表于 2025-3-22 14:01:01 | 只看該作者
https://doi.org/10.1007/978-3-8349-9310-6efficients— as is the case in F., L., and A.. However, none of the results of this section are about polynomials with integer coefficients speci
7#
發(fā)表于 2025-3-22 19:17:46 | 只看該作者
Grundlagen des Stiftungsteuerrechts,rval. This is P1, and it is of a slightly different flavour than most of the other problems in this book, in that there is no restriction on the size of the coefficients. We now state P1 with greater precision.
8#
發(fā)表于 2025-3-22 21:26:34 | 只看該作者
https://doi.org/10.1007/978-3-8349-9310-6ct lists (repeats are allowed) of integers [..,…,..] and [....] such that.We will call this the Prouhet-Tarry-Escott Problem. We call . the size of the solution and . the degree. We abbreviate the above system by writing.
9#
發(fā)表于 2025-3-23 05:24:26 | 只看該作者
10#
發(fā)表于 2025-3-23 09:19:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仲巴县| 建始县| 渝中区| 温宿县| 德化县| 射阳县| 玛纳斯县| 会宁县| 库尔勒市| 嘉祥县| 阿拉尔市| 汶上县| 恩平市| 克山县| 抚宁县| 旅游| 武汉市| 大埔区| 阿拉善右旗| 福建省| 大洼县| 虞城县| 开远市| 新乐市| 阳原县| 城固县| 灵石县| 广灵县| 镇宁| 图们市| 江山市| 鱼台县| 镇康县| 定陶县| 萍乡市| 日照市| 城市| 蒙山县| 嘉荫县| 富民县| 贺州市|