找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Diffusion MRI; 12th International W Suheyla Cetin-Karayumak,Daan Christiaens,Tomasz Pi Conference proceedings 2021 Springer N

[復(fù)制鏈接]
樓主: 淹沒
21#
發(fā)表于 2025-3-25 05:53:51 | 只看該作者
Ermittlungsm?glichkeiten der Steuerfahndungical applicability, we present a novel, efficient algorithm for region-to-region geodesic tractography?which extends existing point-to-point algorithms and incorporates anatomical knowledge by assuming a topographic organization?of fibers. The proposed method connects only seed and target voxels tha
22#
發(fā)表于 2025-3-25 07:33:40 | 只看該作者
Ausl?ser für Ermittlungen der Steuerfahndungg., the FSL XTRACT toolbox, provides an alternative method of ROI analysis by estimating tract regions in an individual native diffusion space, but the exact advantages and disadvantages compared to using a standard space have not been well documented. In the present study, we perform ROI analysis o
23#
發(fā)表于 2025-3-25 13:54:09 | 只看該作者
24#
發(fā)表于 2025-3-25 17:13:35 | 只看該作者
Grundzüge des Ermittlungsverfahrenst to account for brain lesions and deformations, four preprocessing strategies are applied to dMRI, including the novel application of a lesion normalization technique to dMRI. The pipeline involving the lesion normalization technique provides the best prediction performance, with a mean accuracy of
25#
發(fā)表于 2025-3-25 21:52:07 | 只看該作者
https://doi.org/10.1007/978-3-322-90596-3crostructure. We report the ground-truth tissue volume fractions (“intra-axonal”, “extra-axonal”, “myelin”), the fibre density, the bundle density and the fibre orientation distributions (FODs). We believe that this characterization will be beneficial for validating quantitative structural connectiv
26#
發(fā)表于 2025-3-26 01:20:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:52:00 | 只看該作者
28#
發(fā)表于 2025-3-26 10:01:12 | 只看該作者
29#
發(fā)表于 2025-3-26 16:23:12 | 只看該作者
Generalised Hierarchical Bayesian Microstructure Modelling for Diffusion MRIrostructural?models, and fit the models with a Markov chain Monte Carlo (MCMC)?algorithm. We implement our method by utilising Dmipy, a microstructure?modelling software package for diffusion MRI?data. Our code is available at github.com/PaddySlator/dmipy-bayesian.
30#
發(fā)表于 2025-3-26 18:50:16 | 只看該作者
Brain Tissue Microstructure Characterization Using dMRI Based Autoencoder Neural-Networks data fidelity and the number of microstructural features. Our results show how this number is impacted by the number of shells and the .-values used to sample the dMRI signal. We also show how our technique paves the way to a richer characterization of the brain tissue microstructure in-vivo.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民勤县| 通辽市| 商都县| 嘉峪关市| 松桃| 德阳市| 高邮市| 金塔县| 宿州市| 扶绥县| 中江县| 辰溪县| 大理市| 勐海县| 连山| 崇左市| 广饶县| 清远市| 珠海市| 汾西县| 大同市| 潼关县| 兰州市| 邓州市| 濮阳市| 汾阳市| 札达县| 安岳县| 汉川市| 周宁县| 海阳市| 定西市| 乐平市| 昌宁县| 莱阳市| 泌阳县| 普格县| 镇安县| 温泉县| 昌平区| 正定县|