找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Diffusion MRI; 12th International W Suheyla Cetin-Karayumak,Daan Christiaens,Tomasz Pi Conference proceedings 2021 Springer N

[復(fù)制鏈接]
查看: 21929|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:20:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computational Diffusion MRI
副標(biāo)題12th International W
編輯Suheyla Cetin-Karayumak,Daan Christiaens,Tomasz Pi
視頻videohttp://file.papertrans.cn/233/232235/232235.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computational Diffusion MRI; 12th International W Suheyla Cetin-Karayumak,Daan Christiaens,Tomasz Pi Conference proceedings 2021 Springer N
描述.This book constitutes the proceedings of the International Workshop on Computational Diffusion MRI, CDMRI 2021, which was held on October 1, 2021, in conjunction with MICCAI 2021. The conference was planned to take place in Strasbourg, France, but was held virtually due to the COVID-19 pandemic. ..The 13 full papers included were carefully reviewed and selected for inclusion in the book. The proceedings also contain a paper about the design and scope of the MICCAI Diffusion-Simulated Connectivity Challenge (DiSCo) which was held at CDMRI 2021. ..The papers were organized in topical sections as follows: acquisition; microstructure modelling; tractography and connectivity; applications and visualization; DiSCo challenge – invited contribution. .
出版日期Conference proceedings 2021
關(guān)鍵詞computer networks; computer systems; computer vision; correlation analysis; diffusion magnetic resonance
版次1
doihttps://doi.org/10.1007/978-3-030-87615-9
isbn_softcover978-3-030-87614-2
isbn_ebook978-3-030-87615-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Computational Diffusion MRI影響因子(影響力)




書目名稱Computational Diffusion MRI影響因子(影響力)學(xué)科排名




書目名稱Computational Diffusion MRI網(wǎng)絡(luò)公開度




書目名稱Computational Diffusion MRI網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Diffusion MRI被引頻次




書目名稱Computational Diffusion MRI被引頻次學(xué)科排名




書目名稱Computational Diffusion MRI年度引用




書目名稱Computational Diffusion MRI年度引用學(xué)科排名




書目名稱Computational Diffusion MRI讀者反饋




書目名稱Computational Diffusion MRI讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:20:30 | 只看該作者
地板
發(fā)表于 2025-3-22 06:13:53 | 只看該作者
Generalised Hierarchical Bayesian Microstructure Modelling for Diffusion MRI The model is typically fit voxel-by-voxel to the MRI image with least squares minimisation to give voxelwise maps of parameters relating to microstructural?features, such as diffusivities and tissue compartment fractions. However, this fitting approach is susceptible to voxelwise noise, which can l
5#
發(fā)表于 2025-3-22 12:04:43 | 只看該作者
Brain Tissue Microstructure Characterization Using dMRI Based Autoencoder Neural-Networks Imaging (dMRI) data. One of the main drawbacks of this approach is that the number of microstructural features needs to be decided a priori and it is embedded in the model definition. However, the number of microstructural features which is possible to obtain from dMRI data given the acquisition sc
6#
發(fā)表于 2025-3-22 16:36:25 | 只看該作者
Synthesizing VERDICT Maps from Standard DWI Data Using GANs-invasively. However, the quantitative estimation of VERDICT maps requires a specific diffusion-weighed imaging (DWI) acquisition. In this study we investigate the feasibility of synthesizing VERDICT maps from standard DWI data from multi-parametric (mp)-MRI by employing conditional generative adver
7#
發(fā)表于 2025-3-22 17:35:21 | 只看該作者
A Novel Algorithm for Region-to-Region Tractography in Diffusion Tensor Imaging-weighted MRI images, which can be representative of brain white matter fibers. In this work we consider the problem of constructing bundles of tracks between seed and target regions in the most efficient way. In contrast to streamline based methods, a naive region-to-region geodesic approach for fi
8#
發(fā)表于 2025-3-22 23:50:01 | 只看該作者
Fast Tractography Streamline Searchon enables the use of binary search trees to increase the tractography clustering speed without reducing its accuracy. This hierarchical framework offers an upper bound and a lower bound for the point-wise distance between two streamlines, which guarantees the validity of a proximity search. The res
9#
發(fā)表于 2025-3-23 04:27:02 | 只看該作者
10#
發(fā)表于 2025-3-23 07:17:40 | 只看該作者
Diffusion MRI Automated Region of?Interest Analysis in Standard Atlas Space versus the Individual’s RI images as a tensor. Classic DTI parameters (e.g., mean diffusivity or MD, fractional anisotropy or FA) derived from the eigenvalues of tensors have been widely used to describe white matter properties. More recently, novel metrics like neurite orientation dispersion and density imaging (NODDI) ha
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河北区| 马边| 威远县| 庆元县| 合江县| 霍城县| 容城县| 达拉特旗| 西藏| 波密县| 大埔县| 正镶白旗| 五华县| 尖扎县| 绍兴市| 保康县| 南郑县| 庆元县| 天台县| 尼木县| 阿拉善右旗| 将乐县| 德保县| 扎囊县| 遵义市| 莫力| 保亭| 锦屏县| 聂荣县| 册亨县| 枣阳市| 涟水县| 泰来县| 九台市| 科技| 台东县| 珠海市| 大余县| 浮梁县| 克山县| 清镇市|