找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Conformal Mapping; Prem K. Kythe Book 1998 Springer Science+Business Media New York 1998 Applied Mathematics.Approximation.C

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:43:33 | 只看該作者
Doubly Connected Regions,inite need for a simple yet accurate method for mapping a general doubly connected region onto a circular annulus. According to Kantorovich and Krylov (1958, p. 362) the problem of finding the conformal modulus is ‘one of the difficult problems of the theory of conformal transformation’. As such, an
12#
發(fā)表于 2025-3-23 15:55:36 | 只看該作者
13#
發(fā)表于 2025-3-23 18:15:02 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:50 | 只看該作者
15#
發(fā)表于 2025-3-24 06:05:09 | 只看該作者
16#
發(fā)表于 2025-3-24 06:53:04 | 只看該作者
Doubly Connected Regions,thod. A dipole formulation that leads to the method of reduction of connectivity shall be presented. Another useful method for multiply connected regions, based on Mikhlin’s integral equation, that also works for simply and doubly connected regions as well will be discussed in Chapter 13.
17#
發(fā)表于 2025-3-24 10:52:08 | 只看該作者
Susanne Stoll-Kleemann,Martin Welpcan be represented explicitly in terms of integral transforms, which leads to a quadratic convergent Newton—like method that avoids the numerical solution of a system of linear equations and thus becomes more economical. Theodorsen’s integral equation has specific significance in the theory of airfo
18#
發(fā)表于 2025-3-24 15:51:08 | 只看該作者
19#
發(fā)表于 2025-3-24 23:03:28 | 只看該作者
20#
發(fā)表于 2025-3-25 00:57:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 02:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
县级市| 福州市| 桦南县| 夏邑县| 临沧市| 商南县| 临潭县| 安平县| 防城港市| 辽阳市| 赤城县| 镇宁| 资源县| 浪卡子县| 嘉善县| 深水埗区| 龙江县| 永嘉县| 多伦县| 梁平县| 涞源县| 岳阳县| 肥东县| 阜南县| 宜黄县| 任丘市| 资源县| 恩平市| 新竹市| 延寿县| 渭源县| 南汇区| 广州市| 天气| 宝应县| 富宁县| 长春市| 武城县| 祁门县| 太仓市| 吉林市|