找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Conformal Mapping; Prem K. Kythe Book 1998 Springer Science+Business Media New York 1998 Applied Mathematics.Approximation.C

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:50:52 | 只看該作者
Running the Observatory: The Directors,polygon, it becomes necessary to determine approximately the (2n + 2) parameters a.,…, a., x.,…, .., and the constants . and . that appear in the Schwarz—Christoffel formula (2.3.1). Evaluation of these quantities is known as the parameter problem. We have seen in case studies in §2.3 that the mappi
22#
發(fā)表于 2025-3-25 09:40:58 | 只看該作者
Uta Bergh?fer,Augustin Bergh?fersimply connected region onto a disk, and the second with that of the boundary of the region onto the circumference of the disk. Both problems use the Ritz method for approximating the minimal mapping function by polynomials. This mapping function in the first problem is represented in terms of the B
23#
發(fā)表于 2025-3-25 12:37:15 | 只看該作者
24#
發(fā)表于 2025-3-25 17:15:39 | 只看該作者
25#
發(fā)表于 2025-3-25 21:21:52 | 只看該作者
Environmental Science and Engineeringdary Γ and containing the origin, conformally onto the interior or exterior of the unit circle 1w 1 = 1. In the case when Γ is a Jordan contour, we obtain Fredholm integral equations of the second kind . where . known as the boundary correspondence function, is to be determined and ., . is the Neuma
26#
發(fā)表于 2025-3-26 01:41:38 | 只看該作者
27#
發(fā)表于 2025-3-26 07:53:33 | 只看該作者
28#
發(fā)表于 2025-3-26 10:46:31 | 只看該作者
29#
發(fā)表于 2025-3-26 13:59:39 | 只看該作者
https://doi.org/10.1007/978-3-030-47519-2inite need for a simple yet accurate method for mapping a general doubly connected region onto a circular annulus. According to Kantorovich and Krylov (1958, p. 362) the problem of finding the conformal modulus is ‘one of the difficult problems of the theory of conformal transformation’. As such, an
30#
發(fā)表于 2025-3-26 19:33:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 04:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德江县| 临清市| 简阳市| 井陉县| 长治市| 万年县| 灌南县| 鄂伦春自治旗| 抚远县| 新昌县| 突泉县| 大厂| 大英县| 湘潭县| 当涂县| 沭阳县| 那曲县| 洮南市| 革吉县| 宁安市| 日土县| 综艺| 东辽县| 赫章县| 林芝县| 独山县| 潞西市| 米脂县| 赫章县| 内江市| 佛山市| 璧山县| 泾阳县| 竹溪县| 梁山县| 高密市| 永安市| 开阳县| 静安区| 海南省| 奉贤区|