找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables; A. Majda Book 1984 Springer Science+Business Media Ne

[復制鏈接]
查看: 14595|回復: 35
樓主
發(fā)表于 2025-3-21 19:16:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables
編輯A. Majda
視頻videohttp://file.papertrans.cn/232/231986/231986.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables;  A. Majda Book 1984 Springer Science+Business Media Ne
描述Conservation laws arise from the modeling of physical processes through the following three steps: 1) The appropriate physical balance laws are derived for m-phy- t cal quantities, ul""‘~ with u = (ul‘ ... ,u ) and u(x,t) defined m for x = (xl""‘~) E RN (N = 1,2, or 3), t > 0 and with the values m u(x,t) lying in an open subset, G, of R , the state space. The state space G arises because physical quantities such as the density or total energy should always be positive; thus the values of u are often con- strained to an open set G. 2) The flux functions appearing in these balance laws are idealized through prescribed nonlinear functions, F.(u), mapping G into J j = 1, ..? ,N while source terms are defined by S(u,x,t) with S a given smooth function of these arguments with values in Rm. In parti- lar, the detailed microscopic effects of diffusion and dissipation are ignored. 3) A generalized version of the principle of virtual work is applied (see Antman [1]). The formal result of applying the three steps (1)-(3) is that the m physical quantities u define a weak solution of an m x m system of conservation laws, o I + N(Wt‘u + r W ·F.(u) + W·S(u,x,t))dxdt (1.1) R xR j=l Xj J for all W
出版日期Book 1984
關(guān)鍵詞Erhaltungssatz; Gasdynamik; Kompressible Str?mung; Stosswelle; Systems; flow
版次1
doihttps://doi.org/10.1007/978-1-4612-1116-7
isbn_softcover978-0-387-96037-1
isbn_ebook978-1-4612-1116-7Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1984
The information of publication is updating

書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables影響因子(影響力)




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables影響因子(影響力)學科排名




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables網(wǎng)絡(luò)公開度




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables網(wǎng)絡(luò)公開度學科排名




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables被引頻次




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables被引頻次學科排名




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables年度引用




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables年度引用學科排名




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables讀者反饋




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:37:52 | 只看該作者
The Existence and Stability of Shock Fronts in Several Space Variables,low and other systems of conservation laws; 2) these special wave patterns are the only inherently discontinuous waves in multi-D for m × m systems where a rigorous theory has been developed ([15], [16]).
板凳
發(fā)表于 2025-3-22 00:49:58 | 只看該作者
地板
發(fā)表于 2025-3-22 06:09:22 | 只看該作者
5#
發(fā)表于 2025-3-22 10:02:55 | 只看該作者
6#
發(fā)表于 2025-3-22 14:18:07 | 只看該作者
7#
發(fā)表于 2025-3-22 17:05:14 | 只看該作者
Applied Mathematical Scienceshttp://image.papertrans.cn/c/image/231986.jpg
8#
發(fā)表于 2025-3-23 01:14:50 | 只看該作者
9#
發(fā)表于 2025-3-23 04:13:03 | 只看該作者
https://doi.org/10.1007/978-1-4419-6858-6ere u.(x) ∈ G., . for all x ∈ R.. We always assume the detailed structure of a symmetric hyperbolic system as described in (1.17). This chapter has three main subsections which we describe briefly below.
10#
發(fā)表于 2025-3-23 08:07:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
抚远县| 酒泉市| 伊川县| 淮南市| 闽侯县| 大连市| 定南县| 芦溪县| 吉木萨尔县| 乐业县| 敦化市| 商都县| 墨玉县| 兴山县| 五峰| 同心县| 汨罗市| 凤台县| 定安县| 东城区| 安阳县| 札达县| 米林县| 乐东| 台安县| 吴江市| 醴陵市| 织金县| 疏附县| 卓尼县| 曲靖市| 怀安县| 兰溪市| 诸城市| 太和县| 调兵山市| 玉环县| 玉树县| 四会市| 阳信县| 克东县|