找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables; A. Majda Book 1984 Springer Science+Business Media Ne

[復制鏈接]
查看: 14599|回復: 35
樓主
發(fā)表于 2025-3-21 19:16:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables
編輯A. Majda
視頻videohttp://file.papertrans.cn/232/231986/231986.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables;  A. Majda Book 1984 Springer Science+Business Media Ne
描述Conservation laws arise from the modeling of physical processes through the following three steps: 1) The appropriate physical balance laws are derived for m-phy- t cal quantities, ul""‘~ with u = (ul‘ ... ,u ) and u(x,t) defined m for x = (xl""‘~) E RN (N = 1,2, or 3), t > 0 and with the values m u(x,t) lying in an open subset, G, of R , the state space. The state space G arises because physical quantities such as the density or total energy should always be positive; thus the values of u are often con- strained to an open set G. 2) The flux functions appearing in these balance laws are idealized through prescribed nonlinear functions, F.(u), mapping G into J j = 1, ..? ,N while source terms are defined by S(u,x,t) with S a given smooth function of these arguments with values in Rm. In parti- lar, the detailed microscopic effects of diffusion and dissipation are ignored. 3) A generalized version of the principle of virtual work is applied (see Antman [1]). The formal result of applying the three steps (1)-(3) is that the m physical quantities u define a weak solution of an m x m system of conservation laws, o I + N(Wt‘u + r W ·F.(u) + W·S(u,x,t))dxdt (1.1) R xR j=l Xj J for all W
出版日期Book 1984
關鍵詞Erhaltungssatz; Gasdynamik; Kompressible Str?mung; Stosswelle; Systems; flow
版次1
doihttps://doi.org/10.1007/978-1-4612-1116-7
isbn_softcover978-0-387-96037-1
isbn_ebook978-1-4612-1116-7Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1984
The information of publication is updating

書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables影響因子(影響力)




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables影響因子(影響力)學科排名




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables網絡公開度




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables網絡公開度學科排名




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables被引頻次




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables被引頻次學科排名




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables年度引用




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables年度引用學科排名




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables讀者反饋




書目名稱Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:37:52 | 只看該作者
The Existence and Stability of Shock Fronts in Several Space Variables,low and other systems of conservation laws; 2) these special wave patterns are the only inherently discontinuous waves in multi-D for m × m systems where a rigorous theory has been developed ([15], [16]).
板凳
發(fā)表于 2025-3-22 00:49:58 | 只看該作者
地板
發(fā)表于 2025-3-22 06:09:22 | 只看該作者
5#
發(fā)表于 2025-3-22 10:02:55 | 只看該作者
6#
發(fā)表于 2025-3-22 14:18:07 | 只看該作者
7#
發(fā)表于 2025-3-22 17:05:14 | 只看該作者
Applied Mathematical Scienceshttp://image.papertrans.cn/c/image/231986.jpg
8#
發(fā)表于 2025-3-23 01:14:50 | 只看該作者
9#
發(fā)表于 2025-3-23 04:13:03 | 只看該作者
https://doi.org/10.1007/978-1-4419-6858-6ere u.(x) ∈ G., . for all x ∈ R.. We always assume the detailed structure of a symmetric hyperbolic system as described in (1.17). This chapter has three main subsections which we describe briefly below.
10#
發(fā)表于 2025-3-23 08:07:44 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 23:20
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
荣成市| 隆子县| 辛集市| 兴隆县| 额尔古纳市| 九台市| 武义县| 信宜市| 江都市| 镇赉县| 黎川县| 稻城县| 宁安市| 白河县| 涡阳县| 宝兴县| 隆尧县| 宁明县| 天水市| 台前县| 册亨县| 石景山区| 太湖县| 承德市| 奎屯市| 霍城县| 九寨沟县| 武陟县| 七台河市| 尤溪县| 廊坊市| 维西| 吉木乃县| 华容县| 全州县| 丽水市| 凤山市| 邹平县| 乌拉特后旗| 简阳市| 肃南|