找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compressed Sensing & Sparse Filtering; Avishy Y. Carmi,Lyudmila Mihaylova,Simon J. Godsil Book 2014 Springer-Verlag Berlin Heidelberg 2014

[復制鏈接]
樓主: 存貨清單
21#
發(fā)表于 2025-3-25 05:09:23 | 只看該作者
22#
發(fā)表于 2025-3-25 07:56:44 | 只看該作者
Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks,. As a key technology, spectrum sensing enables cognitive radios to find spectrum holes and improve spectral utilization efficiency. To exploit more spectral opportunities, wideband spectrum sensing approaches should be adopted to search multiple frequency bands at a time. However, wideband spectrum
23#
發(fā)表于 2025-3-25 12:32:51 | 只看該作者
24#
發(fā)表于 2025-3-25 17:07:23 | 只看該作者
25#
發(fā)表于 2025-3-25 21:32:01 | 只看該作者
26#
發(fā)表于 2025-3-26 04:04:10 | 只看該作者
27#
發(fā)表于 2025-3-26 04:26:39 | 只看該作者
28#
發(fā)表于 2025-3-26 08:30:56 | 只看該作者
,Estimation of Time-Varying Sparse Signals in?Sensor Networks,ch time interval, the fusion center transmits the predicted signal estimate and its corresponding error covariance to a selected subset of sensors. The selected sensors compute quantized innovations and transmit them to the fusion center. We consider the situation where the signal is sparse, i.e., a
29#
發(fā)表于 2025-3-26 15:45:39 | 只看該作者
Sparsity and Compressed Sensing in Mono-Static and Multi-Static Radar Imaging,Rs). We provide a brief overview of how sparsity-driven imaging has recently been used in various radar imaging scenarios. We then focus on the problem of imaging from undersampled data, and point to recent work on the exploitation of compressed sensing theory in the context of radar imaging. We con
30#
發(fā)表于 2025-3-26 20:44:25 | 只看該作者
Structured Sparse Bayesian Modelling for Audio Restoration,an example, a model to remove impulse and background noise from audio signals via their representation in time-frequency space using Gabor wavelets is presented. A number of prior models for the sparse structure of the signal in this space are introduced, including simple Bernoulli priors on each co
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
深州市| 苗栗市| 兴义市| 宝兴县| 化州市| 石台县| 上思县| 元氏县| 大余县| 墨玉县| 白城市| 崇义县| 若羌县| 甘德县| 普兰县| 砚山县| 瑞丽市| 安阳市| 郓城县| 靖远县| 昌都县| 忻城县| 富阳市| 阿城市| 乐安县| 东兰县| 庄河市| 麟游县| 呼玛县| 阿克苏市| 江油市| 杭州市| 花垣县| 沧源| 昌邑市| 芒康县| 尼木县| 石阡县| 沙湾县| 平利县| 广元市|