找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Compressed Sensing & Sparse Filtering; Avishy Y. Carmi,Lyudmila Mihaylova,Simon J. Godsil Book 2014 Springer-Verlag Berlin Heidelberg 2014

[復(fù)制鏈接]
樓主: 存貨清單
11#
發(fā)表于 2025-3-23 12:18:08 | 只看該作者
12#
發(fā)表于 2025-3-23 14:35:41 | 只看該作者
Frederik Ahlemann,Fedi El Arbi,Axel Heckhen discussed in Sect.?.. Special attention is paid to the use of Sub-Nyquist sampling and compressed sensing techniques for realizing wideband spectrum sensing. Finally, Sect.?. shows an adaptive compressed sensing approach for wideband spectrum sensing in cognitive radio networks.
13#
發(fā)表于 2025-3-23 21:22:22 | 只看該作者
Kunal Mohan Dr.,Frederik Ahlemannacing emphasis on minimal input resources and blind identification whereby only output samples are available plus a–priori information on input characteristics. Based on this taxonomy a variety of algorithms, existing and new, are studied and evaluated by simulations.
14#
發(fā)表于 2025-3-24 00:31:48 | 只看該作者
15#
發(fā)表于 2025-3-24 02:34:47 | 只看該作者
Strategisches Qualit?tscontrollingterns reflect spectral and spatial diversity trade-offs. Characterization of the expected quality of the reconstructed images in these scenarios prior to actual data collection is a problem of central interest in task planning for multi-mode radars. Compressed sensing theory argues that the mutual c
16#
發(fā)表于 2025-3-24 07:15:58 | 只看該作者
1860-4862 btaining sparse solutions using fewer observations thanconventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections978-3-662-50894-7978-3-642-38398-4Series ISSN 1860-4862 Series E-ISSN 1860-4870
17#
發(fā)表于 2025-3-24 14:45:39 | 只看該作者
Introduction to Compressed Sensing and Sparse Filtering,ing and scientific domains. Presently, there is a wealth of theoretical results that extend the basic ideas of compressed sensing essentially making analogies to notions from other fields of mathematics. The objective of this chapter is to introduce the reader to the basic theory of compressed sensi
18#
發(fā)表于 2025-3-24 16:32:23 | 只看該作者
The Geometry of Compressed Sensing,ing a geometrical interpretation. This geometric point of view not only underlies many of the initial theoretical developments on which much of the theory of compressed sensing is built, but has also allowed ideas to be extended to much more general recovery problems and structures. A unifying frame
19#
發(fā)表于 2025-3-24 20:14:07 | 只看該作者
Sparse Signal Recovery with Exponential-Family Noise,ng literature. Typically, the signal reconstruction problem is formulated as .-regularized . regression. From a statistical point of view, this problem is equivalent to maximum a posteriori probability (MAP) parameter estimation with Laplace prior on the vector of parameters (i.e., signal) and linea
20#
發(fā)表于 2025-3-25 01:24:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
老河口市| 汉川市| 晋中市| 邢台县| 凯里市| 西贡区| 郁南县| 通州区| 绥芬河市| 澄城县| 息烽县| 邻水| 凌云县| 浦北县| 常州市| 广平县| 绿春县| 祁阳县| 泽州县| 玉门市| 买车| 台南县| 谢通门县| 连州市| 兴和县| 德江县| 朝阳县| 简阳市| 临邑县| 乌拉特后旗| 千阳县| 龙井市| 本溪| 嵊泗县| 巴南区| 鹤庆县| 甘德县| 胶州市| 凤山县| 绥宁县| 綦江县|