找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Compressed Sensing & Sparse Filtering; Avishy Y. Carmi,Lyudmila Mihaylova,Simon J. Godsil Book 2014 Springer-Verlag Berlin Heidelberg 2014

[復(fù)制鏈接]
查看: 31475|回復(fù): 51
樓主
發(fā)表于 2025-3-21 18:02:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Compressed Sensing & Sparse Filtering
編輯Avishy Y. Carmi,Lyudmila Mihaylova,Simon J. Godsil
視頻videohttp://file.papertrans.cn/232/231975/231975.mp4
概述Presents fundamental concepts, methods and algorithms able to cope with undersampled data.Introduces compressive sampling, called also compressed sensing..Written by well-known experts in the field.In
叢書名稱Signals and Communication Technology
圖書封面Titlebook: Compressed Sensing & Sparse Filtering;  Avishy Y. Carmi,Lyudmila Mihaylova,Simon J. Godsil Book 2014 Springer-Verlag Berlin Heidelberg 2014
描述.This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary..?Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations thanconventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections
出版日期Book 2014
關(guān)鍵詞Bayesian approach; L1-norm penalties; compressive sampling; compressive sensing; homotopy-type solutions
版次1
doihttps://doi.org/10.1007/978-3-642-38398-4
isbn_softcover978-3-662-50894-7
isbn_ebook978-3-642-38398-4Series ISSN 1860-4862 Series E-ISSN 1860-4870
issn_series 1860-4862
copyrightSpringer-Verlag Berlin Heidelberg 2014
The information of publication is updating

書目名稱Compressed Sensing & Sparse Filtering影響因子(影響力)




書目名稱Compressed Sensing & Sparse Filtering影響因子(影響力)學(xué)科排名




書目名稱Compressed Sensing & Sparse Filtering網(wǎng)絡(luò)公開度




書目名稱Compressed Sensing & Sparse Filtering網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Compressed Sensing & Sparse Filtering被引頻次




書目名稱Compressed Sensing & Sparse Filtering被引頻次學(xué)科排名




書目名稱Compressed Sensing & Sparse Filtering年度引用




書目名稱Compressed Sensing & Sparse Filtering年度引用學(xué)科排名




書目名稱Compressed Sensing & Sparse Filtering讀者反饋




書目名稱Compressed Sensing & Sparse Filtering讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:50:57 | 只看該作者
The Geometry of Compressed Sensing,instead of vector data, in many problems, data is more naturally expressed in matrix form (for example a video is often best represented in a pixel by time matrix). A powerful constraint on matrices are constraints on the matrix rank. For example, in low-rank matrix recovery, the goal is to reconstr
板凳
發(fā)表于 2025-3-22 00:46:33 | 只看該作者
地板
發(fā)表于 2025-3-22 08:20:19 | 只看該作者
Nonnegative Tensor Decomposition,mension less using the so-called t-product. A demonstration on an application in facial recognition shows the potential promise of the overall approach. We discuss a number of algorithmic options for solving the resulting optimization problems, and modification of such algorithms for increasing the
5#
發(fā)表于 2025-3-22 11:03:21 | 只看該作者
6#
發(fā)表于 2025-3-22 13:34:43 | 只看該作者
Sparse Nonlinear MIMO Filtering and Identification,acing emphasis on minimal input resources and blind identification whereby only output samples are available plus a–priori information on input characteristics. Based on this taxonomy a variety of algorithms, existing and new, are studied and evaluated by simulations.
7#
發(fā)表于 2025-3-22 18:08:06 | 只看該作者
8#
發(fā)表于 2025-3-22 22:11:21 | 只看該作者
Sparsity and Compressed Sensing in Mono-Static and Multi-Static Radar Imaging,terns reflect spectral and spatial diversity trade-offs. Characterization of the expected quality of the reconstructed images in these scenarios prior to actual data collection is a problem of central interest in task planning for multi-mode radars. Compressed sensing theory argues that the mutual c
9#
發(fā)表于 2025-3-23 04:59:27 | 只看該作者
10#
發(fā)表于 2025-3-23 08:58:34 | 只看該作者
Konzepte zur Erfolgs- und Risikoanalyse,d as .-regularized . regression. We show that, under standard restricted isometry property (RIP) assumptions on the design matrix, .-minimization can provide stable recovery of a sparse signal in presence of exponential-family noise, and state some sufficient conditions on the noise distribution tha
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山西省| 淳化县| 黄梅县| 宜兰县| 洛南县| 保德县| 连州市| 明光市| 东城区| 辽宁省| 连城县| 福海县| 灵石县| 永安市| 乳山市| 徐闻县| 项城市| 余干县| 抚松县| 塘沽区| 山阴县| 陇川县| 茂名市| 图木舒克市| 美姑县| 嫩江县| 仁化县| 山西省| 崇仁县| 瑞丽市| 衡阳市| 保德县| 盘锦市| 新余市| 奇台县| 措勤县| 宁城县| 全南县| 佳木斯市| 潍坊市| 长顺县|