找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity and Real Computation; Lenore Blum,Felipe Cucker,Steve Smale Textbook 1998 Springer Science+Business Media New York 1998 algorit

[復(fù)制鏈接]
樓主: 揭發(fā)
11#
發(fā)表于 2025-3-23 11:41:17 | 只看該作者
Algebraic Settings for the Problem “P ≠ NP?” Hilbert Nullstellensatz as a decision problem is NP-complete over . allows us to reformulate and investigate complexity questions within an algebraic framework and to develop transfer principles for complexity theory.
12#
發(fā)表于 2025-3-23 16:20:21 | 只看該作者
Bézout’s Theoremex polynomial equations in .-unknowns. It is the goal of this chapter to prove Bézout’s Theorem. In Chapter 16 we use Bézout’s Theorem as a tool to derive geometric upper bounds on the number of connected components of semi-algebraic sets and complexity-theoretic lower bounds on some problems such as the Knapsack.
13#
發(fā)表于 2025-3-23 21:34:13 | 只看該作者
14#
發(fā)表于 2025-3-23 23:02:40 | 只看該作者
https://doi.org/10.1007/978-94-009-7915-4 Hilbert Nullstellensatz as a decision problem is NP-complete over . allows us to reformulate and investigate complexity questions within an algebraic framework and to develop transfer principles for complexity theory.
15#
發(fā)表于 2025-3-24 03:52:06 | 只看該作者
https://doi.org/10.1007/978-1-4615-2476-2ex polynomial equations in .-unknowns. It is the goal of this chapter to prove Bézout’s Theorem. In Chapter 16 we use Bézout’s Theorem as a tool to derive geometric upper bounds on the number of connected components of semi-algebraic sets and complexity-theoretic lower bounds on some problems such as the Knapsack.
16#
發(fā)表于 2025-3-24 08:30:12 | 只看該作者
The Shadow Optical Method of Caustics,etical construct foretold and provides a foundation for the modern general-purpose computer. Classical constructions of universal machines generally utilize computable encodings of finite sequences of integers by a single integer in finite time. These codings also ensure that our theory of finite-di
17#
發(fā)表于 2025-3-24 11:35:07 | 只看該作者
18#
發(fā)表于 2025-3-24 14:49:33 | 只看該作者
19#
發(fā)表于 2025-3-24 21:46:07 | 只看該作者
20#
發(fā)表于 2025-3-25 02:13:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 07:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元朗区| 华安县| 稷山县| 克拉玛依市| 新乐市| 鸡西市| 青川县| 隆回县| 栖霞市| 泗洪县| 太保市| 安陆市| 福安市| 苍南县| 清涧县| 金山区| 白沙| 洪湖市| 沁阳市| 博乐市| 苏州市| 平顶山市| 翼城县| 五莲县| 桃江县| 承德市| 和龙市| 黔江区| 桑日县| 天津市| 兴安县| 营山县| 积石山| 木里| 区。| 井陉县| 嘉峪关市| 昔阳县| 锡林浩特市| 庆城县| 贵阳市|