找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity and Real Computation; Lenore Blum,Felipe Cucker,Steve Smale Textbook 1998 Springer Science+Business Media New York 1998 algorit

[復(fù)制鏈接]
查看: 52122|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:27:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Complexity and Real Computation
編輯Lenore Blum,Felipe Cucker,Steve Smale
視頻videohttp://file.papertrans.cn/232/231668/231668.mp4
概述Unique work on this core topic * Written by internationally recognised specialists in mathematics and computing * Provides the basics for numerous practical industrial applications, e.g. AI, robotics,
圖書(shū)封面Titlebook: Complexity and Real Computation;  Lenore Blum,Felipe Cucker,Steve Smale Textbook 1998 Springer Science+Business Media New York 1998 algorit
描述Computational complexity theory provides a framework for understanding the cost of solving computational problems, as measured by the requirement for resources such as time and space. The objects of study are algorithms defined within a formal model of computation. Upper bounds on the computational complexity of a problem are usually derived by constructing and analyzing specific algorithms. Meaningful lower bounds on computational complexity are harder to come by, and are not available for most problems of interest. The dominant approach in complexity theory is to consider algorithms as oper- ating on finite strings of symbols from a finite alphabet. Such strings may represent various discrete objects such as integers or algebraic expressions, but cannot rep- resent real or complex numbers, unless the numbers are rounded to approximate values from a discrete set. A major concern of the theory is the number of com- putation steps required to solve a problem, as a function of the length of the input string.
出版日期Textbook 1998
關(guān)鍵詞algorithms; complexity; fundamental theorem; linear optimization; theoretical computer science
版次1
doihttps://doi.org/10.1007/978-1-4612-0701-6
isbn_softcover978-1-4612-6873-4
isbn_ebook978-1-4612-0701-6
copyrightSpringer Science+Business Media New York 1998
The information of publication is updating

書(shū)目名稱(chēng)Complexity and Real Computation影響因子(影響力)




書(shū)目名稱(chēng)Complexity and Real Computation影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Complexity and Real Computation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Complexity and Real Computation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Complexity and Real Computation被引頻次




書(shū)目名稱(chēng)Complexity and Real Computation被引頻次學(xué)科排名




書(shū)目名稱(chēng)Complexity and Real Computation年度引用




書(shū)目名稱(chēng)Complexity and Real Computation年度引用學(xué)科排名




書(shū)目名稱(chēng)Complexity and Real Computation讀者反饋




書(shū)目名稱(chēng)Complexity and Real Computation讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:04:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:17:14 | 只看該作者
地板
發(fā)表于 2025-3-22 08:31:22 | 只看該作者
5#
發(fā)表于 2025-3-22 12:30:29 | 只看該作者
Newton’s Methodr a polynomial of one complex variable we cannot decide if Newton’s method will converge to a root of the polynomial on a given input. In this chapter we begin a more comprehensive study of Newton’s method. We introduce quantities α, β, and γ which play an important role in analyzing the complexity
6#
發(fā)表于 2025-3-22 16:32:25 | 只看該作者
7#
發(fā)表于 2025-3-22 17:29:53 | 只看該作者
Bézout’s Theoremex polynomial equations in .-unknowns. It is the goal of this chapter to prove Bézout’s Theorem. In Chapter 16 we use Bézout’s Theorem as a tool to derive geometric upper bounds on the number of connected components of semi-algebraic sets and complexity-theoretic lower bounds on some problems such a
8#
發(fā)表于 2025-3-23 01:02:11 | 只看該作者
9#
發(fā)表于 2025-3-23 04:53:39 | 只看該作者
Linear Programming Section 15.1 we show that inputs for rational machines can be supposed to be given by pairs of integers without substantially altering the complexity of the considered problem. In Section 15.2 we define an auxiliary problem which is a modification of the linear programming optimization problem and
10#
發(fā)表于 2025-3-23 09:00:25 | 只看該作者
The Class NP and NP-Complete Problemsy a solution that may be presented to us. Just plug the purported solution into the polynomial and evaluate it. Is this verification tractable in our model of computation? An affirmative answer will depend on the underlying mathematical properties of the ring or field, as well as our measure of complexity, and is at the core of the notion of NP.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 12:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江西省| 宣恩县| 鹤壁市| 会宁县| 内乡县| 江北区| 托克逊县| 宜昌市| 黄陵县| 晋江市| 乌审旗| 太保市| 新竹县| 荣昌县| 嘉定区| 靖边县| 龙泉市| 雅安市| 巴彦淖尔市| 长沙市| 上饶市| 大姚县| 鹿泉市| 简阳市| 屏边| 大庆市| 宁远县| 东方市| 广河县| 凌源市| 海阳市| 蓬安县| 汉阴县| 丹棱县| 麻城市| 连平县| 镇雄县| 甘谷县| 沈丘县| 三穗县| 梁河县|