找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Nonlinearity; Chaos, Phase Transit Vladimir G. Ivancevic,Tijana T. Ivancevic Book 2008 Springer-Verlag Berlin Heidelberg 2008 Chaos

[復(fù)制鏈接]
查看: 21708|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:17:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Complex Nonlinearity
副標(biāo)題Chaos, Phase Transit
編輯Vladimir G. Ivancevic,Tijana T. Ivancevic
視頻videohttp://file.papertrans.cn/232/231513/231513.mp4
概述Complete treatment of the tools of complexity.Includes a comprehensive bibliography on the subject and a detailed index.Enables the reader to perform a competitive research in modern complex nonlinear
叢書(shū)名稱Understanding Complex Systems
圖書(shū)封面Titlebook: Complex Nonlinearity; Chaos, Phase Transit Vladimir G. Ivancevic,Tijana T. Ivancevic Book 2008 Springer-Verlag Berlin Heidelberg 2008 Chaos
描述.Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals. is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. ...The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity
出版日期Book 2008
關(guān)鍵詞Chaos; Complex Nonlinearity; Complexity; Nonlinear system; Nonlinearity; Path Integrals; Phase Transitions
版次1
doihttps://doi.org/10.1007/978-3-540-79357-1
isbn_softcover978-3-662-51862-5
isbn_ebook978-3-540-79357-1Series ISSN 1860-0832 Series E-ISSN 1860-0840
issn_series 1860-0832
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書(shū)目名稱Complex Nonlinearity影響因子(影響力)




書(shū)目名稱Complex Nonlinearity影響因子(影響力)學(xué)科排名




書(shū)目名稱Complex Nonlinearity網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Complex Nonlinearity網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Complex Nonlinearity被引頻次




書(shū)目名稱Complex Nonlinearity被引頻次學(xué)科排名




書(shū)目名稱Complex Nonlinearity年度引用




書(shū)目名稱Complex Nonlinearity年度引用學(xué)科排名




書(shū)目名稱Complex Nonlinearity讀者反饋




書(shū)目名稱Complex Nonlinearity讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:33 | 只看該作者
1860-0832 y – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity978-3-662-51862-5978-3-540-79357-1Series ISSN 1860-0832 Series E-ISSN 1860-0840
板凳
發(fā)表于 2025-3-22 01:55:47 | 只看該作者
地板
發(fā)表于 2025-3-22 07:11:53 | 只看該作者
Book 2008otic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. ...The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques
5#
發(fā)表于 2025-3-22 11:48:29 | 只看該作者
Vladimir G. Ivancevic,Tijana T. IvancevicComplete treatment of the tools of complexity.Includes a comprehensive bibliography on the subject and a detailed index.Enables the reader to perform a competitive research in modern complex nonlinear
6#
發(fā)表于 2025-3-22 14:42:58 | 只看該作者
7#
發(fā)表于 2025-3-22 20:50:24 | 只看該作者
8#
發(fā)表于 2025-3-22 21:39:23 | 只看該作者
9#
發(fā)表于 2025-3-23 01:31:06 | 只看該作者
Complex Nonlinearity978-3-540-79357-1Series ISSN 1860-0832 Series E-ISSN 1860-0840
10#
發(fā)表于 2025-3-23 08:29:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澜沧| 鹤峰县| 大同市| 澄江县| 明水县| 岑巩县| 武邑县| 和田市| 文水县| 南宁市| 迁安市| 浦北县| 峨山| 二连浩特市| 团风县| 东乡县| 高唐县| 建始县| 西昌市| 宁海县| 井研县| 柏乡县| 英山县| 衡南县| 雷州市| 色达县| 且末县| 新昌县| 武冈市| 泗水县| 长汀县| 连城县| 穆棱市| 乡宁县| 呼和浩特市| 桂东县| 吉林市| 陵川县| 当雄县| 仁寿县| 育儿|