找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Nonlinearity; Chaos, Phase Transit Vladimir G. Ivancevic,Tijana T. Ivancevic Book 2008 Springer-Verlag Berlin Heidelberg 2008 Chaos

[復制鏈接]
查看: 21704|回復: 35
樓主
發(fā)表于 2025-3-21 19:17:47 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Nonlinearity
副標題Chaos, Phase Transit
編輯Vladimir G. Ivancevic,Tijana T. Ivancevic
視頻videohttp://file.papertrans.cn/232/231513/231513.mp4
概述Complete treatment of the tools of complexity.Includes a comprehensive bibliography on the subject and a detailed index.Enables the reader to perform a competitive research in modern complex nonlinear
叢書名稱Understanding Complex Systems
圖書封面Titlebook: Complex Nonlinearity; Chaos, Phase Transit Vladimir G. Ivancevic,Tijana T. Ivancevic Book 2008 Springer-Verlag Berlin Heidelberg 2008 Chaos
描述.Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals. is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. ...The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity
出版日期Book 2008
關鍵詞Chaos; Complex Nonlinearity; Complexity; Nonlinear system; Nonlinearity; Path Integrals; Phase Transitions
版次1
doihttps://doi.org/10.1007/978-3-540-79357-1
isbn_softcover978-3-662-51862-5
isbn_ebook978-3-540-79357-1Series ISSN 1860-0832 Series E-ISSN 1860-0840
issn_series 1860-0832
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Complex Nonlinearity影響因子(影響力)




書目名稱Complex Nonlinearity影響因子(影響力)學科排名




書目名稱Complex Nonlinearity網(wǎng)絡公開度




書目名稱Complex Nonlinearity網(wǎng)絡公開度學科排名




書目名稱Complex Nonlinearity被引頻次




書目名稱Complex Nonlinearity被引頻次學科排名




書目名稱Complex Nonlinearity年度引用




書目名稱Complex Nonlinearity年度引用學科排名




書目名稱Complex Nonlinearity讀者反饋




書目名稱Complex Nonlinearity讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:09:33 | 只看該作者
1860-0832 y – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity978-3-662-51862-5978-3-540-79357-1Series ISSN 1860-0832 Series E-ISSN 1860-0840
板凳
發(fā)表于 2025-3-22 01:55:47 | 只看該作者
地板
發(fā)表于 2025-3-22 07:11:53 | 只看該作者
Book 2008otic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. ...The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques
5#
發(fā)表于 2025-3-22 11:48:29 | 只看該作者
Vladimir G. Ivancevic,Tijana T. IvancevicComplete treatment of the tools of complexity.Includes a comprehensive bibliography on the subject and a detailed index.Enables the reader to perform a competitive research in modern complex nonlinear
6#
發(fā)表于 2025-3-22 14:42:58 | 只看該作者
7#
發(fā)表于 2025-3-22 20:50:24 | 只看該作者
8#
發(fā)表于 2025-3-22 21:39:23 | 只看該作者
9#
發(fā)表于 2025-3-23 01:31:06 | 只看該作者
Complex Nonlinearity978-3-540-79357-1Series ISSN 1860-0832 Series E-ISSN 1860-0840
10#
發(fā)表于 2025-3-23 08:29:06 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
盖州市| 博爱县| 临漳县| 古田县| 开鲁县| 克东县| 中卫市| 夏河县| 西城区| 福建省| 甘孜| 兰考县| 札达县| 班玛县| 孝感市| 留坝县| 新闻| 邯郸县| 宝坻区| 临沭县| 吉水县| 建昌县| 出国| 株洲县| 大余县| 岫岩| 三台县| 尤溪县| 灵武市| 龙江县| 元阳县| 吉水县| 南充市| 泽库县| 怀宁县| 广安市| 美姑县| 吴旗县| 化德县| 乌审旗| 怀远县|