找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Kleinian Groups; Angel Cano,Juan Pablo Navarrete,José Seade Book 2013 Springer Basel 2013 Kleinian groups.complex hyperbolic geome

[復(fù)制鏈接]
樓主: CLAST
11#
發(fā)表于 2025-3-23 10:51:11 | 只看該作者
12#
發(fā)表于 2025-3-23 14:33:29 | 只看該作者
13#
發(fā)表于 2025-3-23 20:46:03 | 只看該作者
Complex Hyperbolic Geometry,e constant negative holomorphic curvature. This is analogous to but different from the real hyperbolic space. In the complex case, the sectional curvature is constant on complex lines, but it changes when we consider real 2-planes which are not complex lines.
14#
發(fā)表于 2025-3-24 00:03:11 | 只看該作者
Complex Kleinian Groups,in . that illustrates the diversity of possibilities one has when defining the notion of “l(fā)imit set”. In this example we see that there are several nonequivalent such notions, each having its own interest.
15#
發(fā)表于 2025-3-24 04:14:39 | 只看該作者
Geometry and Dynamics of Automorphisms of ,,tion for the elements in PU(2, 1) ? PSL(3,.). Just as in that case, and more generally for the isometries of manifolds of negative curvature, the automorphisms of . can also be classified into the three types of elliptic, parabolic and loxodromic (or hyperbolic) elements, according to their geometry
16#
發(fā)表于 2025-3-24 08:18:05 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:06 | 只看該作者
The Limit Set in Dimension 2,uch notions, each with its own properties and characteristics, providing each a different kind of information about the geometry and dynamics of the group. The Kulkarni limit set has the property of “quasi-minimality”, which is interesting for understanding the minimal invariant sets; and the action
18#
發(fā)表于 2025-3-24 15:24:34 | 只看該作者
Complex Schottky Groups,s that every compact Riemann surface can be obtained as the quotient of an open set in the Riemann sphere S2 which is invariant under the action of a Schottky group. On the other hand, the limit sets of Schottky groups have rich and fascinating geometry and dynamics, which has inspired much of the c
19#
發(fā)表于 2025-3-24 22:00:33 | 只看該作者
Kleinian Groups and Twistor Theory,s a rich interplay between the conformal geometry on even-dimensional spheres and the holomorphic on their twistor spaces. Here we follow [202] and explain how the relations between the geometry of a manifold and the geometry of its twistor space, can be carried forward to dynamics. In this way we g
20#
發(fā)表于 2025-3-24 23:57:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉祥县| 绥阳县| 眉山市| 香河县| 临武县| 饶平县| 金溪县| 中牟县| 咸丰县| 垦利县| 房山区| 陆河县| 延寿县| 赤峰市| 呈贡县| 泸溪县| 凤台县| 贵德县| 平塘县| 剑阁县| 呼和浩特市| 阜新市| 孝昌县| 彰化县| 山东省| 社旗县| 米泉市| 山东省| 夏津县| 大港区| 樟树市| 黑水县| 湘乡市| 城口县| 萨迦县| 华安县| 双牌县| 西华县| 习水县| 夏邑县| 富锦市|