找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Kleinian Groups; Angel Cano,Juan Pablo Navarrete,José Seade Book 2013 Springer Basel 2013 Kleinian groups.complex hyperbolic geome

[復(fù)制鏈接]
查看: 33029|回復(fù): 46
樓主
發(fā)表于 2025-3-21 18:34:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Complex Kleinian Groups
編輯Angel Cano,Juan Pablo Navarrete,José Seade
視頻videohttp://file.papertrans.cn/232/231460/231460.mp4
概述Lays down the foundations of a new field of mathematics including areas as important as real and complex hyperbolic geometry, discrete group actions in complex geometry and the uniformization problem.
叢書(shū)名稱Progress in Mathematics
圖書(shū)封面Titlebook: Complex Kleinian Groups;  Angel Cano,Juan Pablo Navarrete,José Seade Book 2013 Springer Basel 2013 Kleinian groups.complex hyperbolic geome
描述This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP.1.. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.?
出版日期Book 2013
關(guān)鍵詞Kleinian groups; complex hyperbolic geometry; discontinuity region; equicontinuity; limit set
版次1
doihttps://doi.org/10.1007/978-3-0348-0481-3
isbn_softcover978-3-0348-0805-7
isbn_ebook978-3-0348-0481-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel 2013
The information of publication is updating

書(shū)目名稱Complex Kleinian Groups影響因子(影響力)




書(shū)目名稱Complex Kleinian Groups影響因子(影響力)學(xué)科排名




書(shū)目名稱Complex Kleinian Groups網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Complex Kleinian Groups網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Complex Kleinian Groups被引頻次




書(shū)目名稱Complex Kleinian Groups被引頻次學(xué)科排名




書(shū)目名稱Complex Kleinian Groups年度引用




書(shū)目名稱Complex Kleinian Groups年度引用學(xué)科排名




書(shū)目名稱Complex Kleinian Groups讀者反饋




書(shū)目名稱Complex Kleinian Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:08:27 | 只看該作者
Kommentar zu C. Knill und D. Lehmkuhl on its complement is properly discontinuous, which is useful for studying geometric properties of the group. Yet, this may not be the largest region where the action is properly discontinuous. There is also the region of equicontinuity, which provides a set where we can use the powerful tools of analysis to study the group action.
地板
發(fā)表于 2025-3-22 06:31:08 | 只看該作者
The Limit Set in Dimension 2, on its complement is properly discontinuous, which is useful for studying geometric properties of the group. Yet, this may not be the largest region where the action is properly discontinuous. There is also the region of equicontinuity, which provides a set where we can use the powerful tools of analysis to study the group action.
5#
發(fā)表于 2025-3-22 10:41:27 | 只看該作者
Book 2013rk of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP.1.. When going into higher dimensions, the
6#
發(fā)表于 2025-3-22 15:57:09 | 只看該作者
7#
發(fā)表于 2025-3-22 20:35:24 | 只看該作者
https://doi.org/10.1007/978-3-662-54308-5morphisms of . can also be classified into the three types of elliptic, parabolic and loxodromic (or hyperbolic) elements, according to their geometry and dynamics. This classification can be also done algebraically, in terms of their trace.
8#
發(fā)表于 2025-3-22 22:02:18 | 只看該作者
Staatsentwicklung und PolicyforschungSchottky group. On the other hand, the limit sets of Schottky groups have rich and fascinating geometry and dynamics, which has inspired much of the current knowledge we have about fractal sets and 1-dimensional holomorphic dynamics.
9#
發(fā)表于 2025-3-23 01:24:43 | 只看該作者
10#
發(fā)表于 2025-3-23 08:13:17 | 只看該作者
Geometry and Dynamics of Automorphisms of ,,morphisms of . can also be classified into the three types of elliptic, parabolic and loxodromic (or hyperbolic) elements, according to their geometry and dynamics. This classification can be also done algebraically, in terms of their trace.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陕西省| 泰州市| 新疆| 枣强县| 台东市| 涞源县| 大渡口区| 兴义市| 霍城县| 和田县| 泰安市| 乐业县| 阿坝县| 凤庆县| 巴东县| 荣成市| 武邑县| 和硕县| 资源县| 获嘉县| 九江县| 醴陵市| 陵水| 镇康县| 无极县| 正宁县| 开江县| 克东县| 泸定县| 集安市| 浪卡子县| 郸城县| 阜新| 商丘市| 高阳县| 禹州市| 弥勒县| 类乌齐县| 新源县| 临泽县| 孝义市|