找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Geometry of Slant Submanifolds; Bang-Yen Chen,Mohammad Hasan Shahid,Falleh Al-Sola Book 2022 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Tamoxifen
31#
發(fā)表于 2025-3-26 22:46:43 | 只看該作者
Forschungen zur Europ?ischen Integrationemi-slant submanifolds. Cabrerizo et al. studied slant, semi-slant, hemi-slant, and bi-slant submanifold in contact geometry [., .]. Later, B. Sahin and M. Atceken studied slant, semi-slant, and bi-slant submanifolds of locally Riemannian product manifolds (for instance, see [., .]).
32#
發(fā)表于 2025-3-27 04:20:05 | 只看該作者
33#
發(fā)表于 2025-3-27 05:22:58 | 只看該作者
34#
發(fā)表于 2025-3-27 12:38:02 | 只看該作者
Slant Submanifolds and Their Warped Products in Locally Product Riemannian Manifolds,emi-slant submanifolds. Cabrerizo et al. studied slant, semi-slant, hemi-slant, and bi-slant submanifold in contact geometry [., .]. Later, B. Sahin and M. Atceken studied slant, semi-slant, and bi-slant submanifolds of locally Riemannian product manifolds (for instance, see [., .]).
35#
發(fā)表于 2025-3-27 16:35:53 | 只看該作者
Slant Submanifolds of Quaternion Kaehler and HyperKaehler Manifolds,sional vector bundle . consisting of tensors of type (1,1) with local basis of almost Hermitian structures . such that (a) . (b) . where . is the identity tensor of type (1,1) on .. (c) . for all vector fields . tangent to ., where . denotes the Riemannian connection in . and . are 1-forms defined locally on . such that
36#
發(fā)表于 2025-3-27 21:28:40 | 只看該作者
Geometry of Pointwise Slant Immersions in Almost Hermitian Manifolds,rther investigated by Cabrerizo et al. in 2000. The theory of slant submanifolds became a very rich area of research for geometers. Slant submanifolds have been studied in different kinds of structures of almost Hermitian manifolds by several geometers.
37#
發(fā)表于 2025-3-27 23:08:37 | 只看該作者
38#
發(fā)表于 2025-3-28 02:56:18 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:37 | 只看該作者
40#
發(fā)表于 2025-3-28 12:13:15 | 只看該作者
Hemi-slant and Semi-slant Submanifolds in Locally Conformal Kaehler Manifolds,results for hemi-slant submanifolds. In Sect.?2, we prove new results for warped product hemi-slant submanifolds. In Sect.?3, we provide a survey of recent results for semi-slant submanifolds. In the last section, we prove new results and give some remarkable recent results for warped product semi-s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐安县| 乐安县| 宁明县| 武汉市| 玉环县| 黄陵县| 突泉县| 驻马店市| 临邑县| 平原县| 遂昌县| 泽州县| 专栏| 滦南县| 永平县| 桂林市| 芜湖县| 平定县| 措美县| 高青县| 连南| 万山特区| 政和县| 巴里| 珲春市| 柳州市| 松阳县| 南岸区| 遵化市| 昌图县| 吉首市| 井陉县| 开平市| 万山特区| 墨竹工卡县| 商洛市| 股票| 昌平区| 罗源县| 宁都县| 嫩江县|