找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Geometry of Slant Submanifolds; Bang-Yen Chen,Mohammad Hasan Shahid,Falleh Al-Sola Book 2022 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Tamoxifen
21#
發(fā)表于 2025-3-25 06:32:21 | 只看該作者
Forschungen zur Europ?ischen Integrationhen, many geometers studied these submanifolds. A. Lotta defined and studied slant submanifolds in contact geometry [., .]. Papaghiuc [.] introduced semi-slant submanifolds. Cabrerizo et al. studied slant, semi-slant, hemi-slant, and bi-slant submanifold in contact geometry [., .]. Later, B. Sahin a
22#
發(fā)表于 2025-3-25 08:34:12 | 只看該作者
https://doi.org/10.1007/978-3-531-91382-7, let . be a 4m-dimensional Riemannian manifold with metric tensor .. Then . is said to be a quaternion Kaehler manifold if there exists a three-dimensional vector bundle . consisting of tensors of type (1,1) with local basis of almost Hermitian structures . such that (a) . (b) . where . is the iden
23#
發(fā)表于 2025-3-25 13:39:17 | 只看該作者
24#
發(fā)表于 2025-3-25 16:23:23 | 只看該作者
Forschungen zur Europ?ischen Integrationintroduced by Chen in [., .]. The study of slant immersions into complex Euclidean spaces . and . was presented by Chen and Tazawa in [., .], while slant immersions of Kaehler .-spaces into complex projective spaces were given by Maeda et al. in [.]. Slant immersions of a Riemannian manifold into an
25#
發(fā)表于 2025-3-25 21:49:38 | 只看該作者
https://doi.org/10.1007/978-3-322-95147-2ent bundle of a submanifold with respect to the action of the almost complex structure . of the ambient manifold, there are three important classes of submanifolds, namely complex submanifolds, totally real submanifolds, and slant submanifolds.
26#
發(fā)表于 2025-3-26 02:12:33 | 只看該作者
27#
發(fā)表于 2025-3-26 06:06:41 | 只看該作者
Book 2022esearchers. The book discusses a wide range of topics, including slant surfaces, slant submersions, nearly Kaehler, locally conformal Kaehler, and quaternion Kaehler manifolds. It provides several classification results of minimal slant surfaces, quasi-minimal slant surfaces, slant surfaces with par
28#
發(fā)表于 2025-3-26 10:40:11 | 只看該作者
Slant Lightlike Submanifolds of Indefinite Kaehler Manifolds and Their Warped Product Manifolds, almost contact metric manifold were introduced by Lotta in [.]. Then the geometry of slant immersions and slant submanifolds attained momentum after the research on this subject matter by [., ., .] and many other references therein.
29#
發(fā)表于 2025-3-26 15:38:24 | 只看該作者
Forschungen zur Europ?ischen Integration almost contact metric manifold were introduced by Lotta in [.]. Then the geometry of slant immersions and slant submanifolds attained momentum after the research on this subject matter by [., ., .] and many other references therein.
30#
發(fā)表于 2025-3-26 19:41:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌宁县| 三河市| 寻甸| 达州市| 文安县| 阿克苏市| 正定县| 全南县| 承德市| 正宁县| 自贡市| 黔南| 五峰| 鹤山市| 三亚市| 北碚区| 寿宁县| 曲周县| 日喀则市| 南部县| 朔州市| 泽普县| 廉江市| 石河子市| 仲巴县| 咸宁市| 廊坊市| 克东县| 常宁市| 鹤岗市| 南丹县| 安康市| 吉林市| 衡南县| 乐昌市| 苗栗市| 塔城市| 鄂托克旗| 龙州县| 马关县| 同江市|