找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Geometry of Slant Submanifolds; Bang-Yen Chen,Mohammad Hasan Shahid,Falleh Al-Sola Book 2022 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Tamoxifen
21#
發(fā)表于 2025-3-25 06:32:21 | 只看該作者
Forschungen zur Europ?ischen Integrationhen, many geometers studied these submanifolds. A. Lotta defined and studied slant submanifolds in contact geometry [., .]. Papaghiuc [.] introduced semi-slant submanifolds. Cabrerizo et al. studied slant, semi-slant, hemi-slant, and bi-slant submanifold in contact geometry [., .]. Later, B. Sahin a
22#
發(fā)表于 2025-3-25 08:34:12 | 只看該作者
https://doi.org/10.1007/978-3-531-91382-7, let . be a 4m-dimensional Riemannian manifold with metric tensor .. Then . is said to be a quaternion Kaehler manifold if there exists a three-dimensional vector bundle . consisting of tensors of type (1,1) with local basis of almost Hermitian structures . such that (a) . (b) . where . is the iden
23#
發(fā)表于 2025-3-25 13:39:17 | 只看該作者
24#
發(fā)表于 2025-3-25 16:23:23 | 只看該作者
Forschungen zur Europ?ischen Integrationintroduced by Chen in [., .]. The study of slant immersions into complex Euclidean spaces . and . was presented by Chen and Tazawa in [., .], while slant immersions of Kaehler .-spaces into complex projective spaces were given by Maeda et al. in [.]. Slant immersions of a Riemannian manifold into an
25#
發(fā)表于 2025-3-25 21:49:38 | 只看該作者
https://doi.org/10.1007/978-3-322-95147-2ent bundle of a submanifold with respect to the action of the almost complex structure . of the ambient manifold, there are three important classes of submanifolds, namely complex submanifolds, totally real submanifolds, and slant submanifolds.
26#
發(fā)表于 2025-3-26 02:12:33 | 只看該作者
27#
發(fā)表于 2025-3-26 06:06:41 | 只看該作者
Book 2022esearchers. The book discusses a wide range of topics, including slant surfaces, slant submersions, nearly Kaehler, locally conformal Kaehler, and quaternion Kaehler manifolds. It provides several classification results of minimal slant surfaces, quasi-minimal slant surfaces, slant surfaces with par
28#
發(fā)表于 2025-3-26 10:40:11 | 只看該作者
Slant Lightlike Submanifolds of Indefinite Kaehler Manifolds and Their Warped Product Manifolds, almost contact metric manifold were introduced by Lotta in [.]. Then the geometry of slant immersions and slant submanifolds attained momentum after the research on this subject matter by [., ., .] and many other references therein.
29#
發(fā)表于 2025-3-26 15:38:24 | 只看該作者
Forschungen zur Europ?ischen Integration almost contact metric manifold were introduced by Lotta in [.]. Then the geometry of slant immersions and slant submanifolds attained momentum after the research on this subject matter by [., ., .] and many other references therein.
30#
發(fā)表于 2025-3-26 19:41:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邳州市| 泰和县| 金阳县| 舞阳县| 醴陵市| 丰镇市| 锦屏县| 榆林市| 新乡县| 长子县| 惠水县| 沈丘县| 松江区| 南雄市| 河间市| 吕梁市| 东乡族自治县| 隆昌县| 高邮市| 徐水县| 巨野县| 深州市| 定兴县| 徐水县| 北宁市| 兴安县| 托克托县| 万州区| 喀喇沁旗| 土默特左旗| 榆中县| 鄂托克旗| 临泽县| 宁化县| 聊城市| 湄潭县| 南投县| 泗阳县| 平舆县| 墨玉县| 玛曲县|