找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analytic Sets; E. M. Chirka Book 1989 Kluwer Academic Publishers 1989 Complex analysis.Dimension.Divisor.algebraic varieties

[復制鏈接]
樓主: Combat
11#
發(fā)表于 2025-3-23 10:59:24 | 只看該作者
Fundamentals of the Theory of Analytic Sets, U.: |z.| < r, counted with multiplicities. Then f can, in a certain neighborhood U = U’ × U. ? V of the coordinate origin in ?., be represented in the form . where the functions c.(z’) are holomorphic in U’, while ? is holoniorphic and zero free in U.
12#
發(fā)表于 2025-3-23 16:45:30 | 只看該作者
Tangent Cones and Intersection Theory,ne with vertex 0 since if ν ∈ .(., .), then .ν also belongs to .(., .) for all . ≥ 0. Geometrically the cone .(., .) is the set of limit positions of secants of . passing through .; it is the set of limit points of the family of sets .(. ? .) = {.(. ? .):. ∈ .} as .→∞. If . ? ē then, by definition, the set . (., .) is empty.
13#
發(fā)表于 2025-3-23 21:35:17 | 只看該作者
14#
發(fā)表于 2025-3-23 23:56:24 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:58 | 只看該作者
Tangent Cones and Intersection Theory,uch that . → . and . (. ? .) → ν as .→ ∞. The set of all such tangent vectors is denoted by .(., .) and is called the . to . at .. This really is a cone with vertex 0 since if ν ∈ .(., .), then .ν also belongs to .(., .) for all . ≥ 0. Geometrically the cone .(., .) is the set of limit positions of
16#
發(fā)表于 2025-3-24 10:33:32 | 只看該作者
17#
發(fā)表于 2025-3-24 13:06:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:21:30 | 只看該作者
0169-6378 in the purely algebraic language of ideals in commutative algebras..In the present book I have tried to eliminate this noncorrespondence and to give a geometri978-94-010-7565-7978-94-009-2366-9Series ISSN 0169-6378
19#
發(fā)表于 2025-3-24 19:30:25 | 只看該作者
20#
發(fā)表于 2025-3-24 23:40:58 | 只看該作者
Metrical Properties of Analytic Sets,ally define in .Ω the operation of multiplication by a complex number ((. + .). = . +.), and complex conjugation Σ{.(?/?.)+.(?/?.) ? Σ{.(?/?.)?.(?/?.) (in .Ω the operator Σ.(?/?.) ? Σ?.(?/?.) corresponds to it; do not confuse it with the corresponding operation in ?.Ω!). Hermiticity of .(.,.′) means
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平远县| 钟祥市| 锡林浩特市| 罗山县| 泰安市| 襄樊市| 泸州市| 文化| 遵义县| 张家口市| 彭泽县| 濮阳市| 太谷县| 徐水县| 嘉义县| 北京市| 大埔县| 肇庆市| 同心县| 乌鲁木齐市| 阿合奇县| 武宣县| 迁西县| 云林县| 武强县| 金湖县| 叙永县| 松潘县| 怀安县| 北安市| 浦县| 罗平县| 娱乐| 镇沅| 沂水县| 东阳市| 韶山市| 尼玛县| 巴林右旗| 长宁县| 浪卡子县|