找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analytic Sets; E. M. Chirka Book 1989 Kluwer Academic Publishers 1989 Complex analysis.Dimension.Divisor.algebraic varieties

[復(fù)制鏈接]
查看: 26951|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:43:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Analytic Sets
編輯E. M. Chirka
視頻videohttp://file.papertrans.cn/232/231395/231395.mp4
叢書名稱Mathematics and its Applications
圖書封面Titlebook: Complex Analytic Sets;  E. M. Chirka Book 1989 Kluwer Academic Publishers 1989 Complex analysis.Dimension.Divisor.algebraic varieties
描述The theory of complex analytic sets is part of the modern geometrical theory of functions of several complex variables. A wide circle of problems in multidimensional complex analysis, related to holomorphic functions and maps, can be reformulated in terms of analytic sets. In these reformulations additional phenomena may emerge, while for the proofs new methods are necessary. (As an example we can mention the boundary properties of conformal maps of domains in the plane, which may be studied by means of the boundary properties of the graphs of such maps.).The theory of complex analytic sets is a relatively young branch of complex analysis. Basically, it was developed to fulfill the need of the theory of functions of several complex variables, but for a long time its development was, so to speak, within the framework of algebraic geometry - by analogy with algebraic sets. And although at present the basic methods of the theory of analytic sets are related with analysis and geometry, the foundations of the theory are expounded in the purely algebraic language of ideals in commutative algebras..In the present book I have tried to eliminate this noncorrespondence and to give a geometri
出版日期Book 1989
關(guān)鍵詞Complex analysis; Dimension; Divisor; algebraic varieties
版次1
doihttps://doi.org/10.1007/978-94-009-2366-9
isbn_softcover978-94-010-7565-7
isbn_ebook978-94-009-2366-9Series ISSN 0169-6378
issn_series 0169-6378
copyrightKluwer Academic Publishers 1989
The information of publication is updating

書目名稱Complex Analytic Sets影響因子(影響力)




書目名稱Complex Analytic Sets影響因子(影響力)學科排名




書目名稱Complex Analytic Sets網(wǎng)絡(luò)公開度




書目名稱Complex Analytic Sets網(wǎng)絡(luò)公開度學科排名




書目名稱Complex Analytic Sets被引頻次




書目名稱Complex Analytic Sets被引頻次學科排名




書目名稱Complex Analytic Sets年度引用




書目名稱Complex Analytic Sets年度引用學科排名




書目名稱Complex Analytic Sets讀者反饋




書目名稱Complex Analytic Sets讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:26 | 只看該作者
Sulfate adenylyltransferase (ADP), 0 in the disc |z.| < R. Let r < R be such that f (0’,z.) does not have zeros on the circle |z.| = r, and let k be the number of its zeros in the disk U.: |z.| < r, counted with multiplicities. Then f can, in a certain neighborhood U = U’ × U. ? V of the coordinate origin in ?., be represented in th
板凳
發(fā)表于 2025-3-22 04:12:08 | 只看該作者
Diethmar Schomburg,Ida Schomburg,Antje Changuch that . → . and . (. ? .) → ν as .→ ∞. The set of all such tangent vectors is denoted by .(., .) and is called the . to . at .. This really is a cone with vertex 0 since if ν ∈ .(., .), then .ν also belongs to .(., .) for all . ≥ 0. Geometrically the cone .(., .) is the set of limit positions of
地板
發(fā)表于 2025-3-22 08:19:39 | 只看該作者
Polyribonucleotide nucleotidyltransferase,that is an infinitely differentiable function of . (i.e. if .(.), .′(.) are vector fields of class ., then .(.(.), .′(.)) is a function of class .). The notion of Hermiticity requires, of course, a complex structure in the fibers of .Ω. It is introduced in a standard manner as follows: if . are the
5#
發(fā)表于 2025-3-22 09:34:51 | 只看該作者
6#
發(fā)表于 2025-3-22 15:32:54 | 只看該作者
7#
發(fā)表于 2025-3-22 17:40:27 | 只看該作者
8#
發(fā)表于 2025-3-22 22:45:48 | 只看該作者
9#
發(fā)表于 2025-3-23 02:05:48 | 只看該作者
10#
發(fā)表于 2025-3-23 05:59:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
慈利县| 永城市| 翁源县| 上林县| 常山县| 遂川县| 寿宁县| 武义县| 阜新市| 姜堰市| 隆化县| 六盘水市| 乌苏市| 北辰区| 镇安县| 巫溪县| 靖安县| 张家口市| 毕节市| 固镇县| 五家渠市| 将乐县| 手游| 灌阳县| 鄂温| 夏津县| 江口县| 若羌县| 湖南省| 乌鲁木齐市| 南京市| 泽库县| 邮箱| 平泉县| 澎湖县| 兴海县| 子长县| 年辖:市辖区| 陆川县| 东阿县| 广平县|