找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analytic Desingularization; José Manuel Aroca,Heisuke Hironaka,José Luis Vicen Book 2018 Springer Japan KK, part of Springer Natur

[復(fù)制鏈接]
樓主: 喝水
11#
發(fā)表于 2025-3-23 10:33:41 | 只看該作者
12#
發(fā)表于 2025-3-23 16:48:52 | 只看該作者
13#
發(fā)表于 2025-3-23 19:07:35 | 只看該作者
Epilogue: Singularities of Differential Equations,The problem of resolution of singularities of an algebraic or analytic variety is, at least in its local formulation, close related with another problem, the parametrization of a neighborhood of a point on the variety, i.e. the problem of finding a solution, in some sense, of the system of equations defining the variety.
14#
發(fā)表于 2025-3-23 22:14:07 | 只看該作者
15#
發(fā)表于 2025-3-24 04:00:58 | 只看該作者
Springer Japan KK, part of Springer Nature 2018
16#
發(fā)表于 2025-3-24 09:46:23 | 只看該作者
Complex-Analytic Spaces and Elements,ity (called the structure sheaf). Given two ringed spaces . and ., a . between them is a pair (., .), where . is a continuous map from . to . and . is an .-homomorphism from . to ., i.e., a collection of ring homomorphisms (mapping unity to unity) ., one for each open subset . of ., such that for every . the diagram
17#
發(fā)表于 2025-3-24 14:41:52 | 只看該作者
Complex-Analytic Spaces and Elements,ity (called the structure sheaf). Given two ringed spaces . and ., a . between them is a pair (., .), where . is a continuous map from . to . and . is an .-homomorphism from . to ., i.e., a collection of ring homomorphisms (mapping unity to unity) ., one for each open subset . of ., such that for ev
18#
發(fā)表于 2025-3-24 16:26:47 | 只看該作者
The Weierstrass Preparation Theorem and Its Consequences,on, to consider a specific isomorphism ., where . is an open neighborhood of . in ., .? is an open neighborhood of . in some ., and . is the sheaf of holomorphic functions on .? such that .(.)?=?.. If . is any holomorphic function on the open subset .?.??.?, we denote again by . the pull-back functi
19#
發(fā)表于 2025-3-24 19:04:11 | 只看該作者
20#
發(fā)表于 2025-3-25 02:22:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全南县| 革吉县| 宁城县| 陆河县| 三江| 绥棱县| 福海县| 台前县| 吴桥县| 丹阳市| 内丘县| 金昌市| 禄劝| 东光县| 化州市| 通城县| 尉犁县| 大埔县| 鞍山市| 武山县| 万宁市| 开封县| 抚宁县| 朝阳区| 徐闻县| 怀化市| 泗水县| 阜康市| 手游| 汶上县| 响水县| 全州县| 沿河| 长寿区| 遂平县| 西城区| 双柏县| 民乐县| 漾濞| 淅川县| 平乡县|