找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analytic Desingularization; José Manuel Aroca,Heisuke Hironaka,José Luis Vicen Book 2018 Springer Japan KK, part of Springer Natur

[復(fù)制鏈接]
樓主: 喝水
11#
發(fā)表于 2025-3-23 10:33:41 | 只看該作者
12#
發(fā)表于 2025-3-23 16:48:52 | 只看該作者
13#
發(fā)表于 2025-3-23 19:07:35 | 只看該作者
Epilogue: Singularities of Differential Equations,The problem of resolution of singularities of an algebraic or analytic variety is, at least in its local formulation, close related with another problem, the parametrization of a neighborhood of a point on the variety, i.e. the problem of finding a solution, in some sense, of the system of equations defining the variety.
14#
發(fā)表于 2025-3-23 22:14:07 | 只看該作者
15#
發(fā)表于 2025-3-24 04:00:58 | 只看該作者
Springer Japan KK, part of Springer Nature 2018
16#
發(fā)表于 2025-3-24 09:46:23 | 只看該作者
Complex-Analytic Spaces and Elements,ity (called the structure sheaf). Given two ringed spaces . and ., a . between them is a pair (., .), where . is a continuous map from . to . and . is an .-homomorphism from . to ., i.e., a collection of ring homomorphisms (mapping unity to unity) ., one for each open subset . of ., such that for every . the diagram
17#
發(fā)表于 2025-3-24 14:41:52 | 只看該作者
Complex-Analytic Spaces and Elements,ity (called the structure sheaf). Given two ringed spaces . and ., a . between them is a pair (., .), where . is a continuous map from . to . and . is an .-homomorphism from . to ., i.e., a collection of ring homomorphisms (mapping unity to unity) ., one for each open subset . of ., such that for ev
18#
發(fā)表于 2025-3-24 16:26:47 | 只看該作者
The Weierstrass Preparation Theorem and Its Consequences,on, to consider a specific isomorphism ., where . is an open neighborhood of . in ., .? is an open neighborhood of . in some ., and . is the sheaf of holomorphic functions on .? such that .(.)?=?.. If . is any holomorphic function on the open subset .?.??.?, we denote again by . the pull-back functi
19#
發(fā)表于 2025-3-24 19:04:11 | 只看該作者
20#
發(fā)表于 2025-3-25 02:22:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆安县| 高碑店市| 桂林市| 文成县| 昌宁县| 桑植县| 天峨县| 喀喇沁旗| 绥德县| 社旗县| 富平县| 临澧县| 南澳县| 铜鼓县| 昔阳县| 小金县| 乡城县| 长岛县| 全州县| 华阴市| 辉南县| 贵溪市| 雅安市| 吉木乃县| 手游| 双桥区| 宁安市| 南华县| 凤冈县| 清涧县| 偃师市| 台北市| 庆元县| 巫山县| 商洛市| 行唐县| 行唐县| 铁力市| 克什克腾旗| 横峰县| 石门县|