找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analytic Desingularization; José Manuel Aroca,Heisuke Hironaka,José Luis Vicen Book 2018 Springer Japan KK, part of Springer Natur

[復制鏈接]
查看: 17073|回復: 36
樓主
發(fā)表于 2025-3-21 18:53:01 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Analytic Desingularization
編輯José Manuel Aroca,Heisuke Hironaka,José Luis Vicen
視頻videohttp://file.papertrans.cn/232/231393/231393.mp4
概述Presents a complete and self-contained proof of the theorem of desingularization for complex-analytic spaces.Contains an elegant presentation of all the tools of complex-analytic geometry needed to st
圖書封面Titlebook: Complex Analytic Desingularization;  José Manuel Aroca,Heisuke Hironaka,José Luis Vicen Book 2018 Springer Japan KK, part of Springer Natur
描述[From the foreword by B. Teissier] The main ideas of the proof of resolution of singularities of complex-analytic spaces presented here were developed by Heisuke Hironaka in the late 1960s and early 1970s. Since then, a number of proofs, all inspired by Hironaka‘s general approach, have appeared, the validity of some of them extending beyond the complex analytic case. The proof has now been so streamlined that, although it was seen 50 years ago as one of the most difficult proofs produced by mathematics, it can now be the subject of an advanced university course. Yet, far from being of historical interest only, this long-awaited book will be very rewarding for any mathematician interested in singularity theory. Rather than a proof of a canonical or algorithmic resolution of singularities, what is presented is in fact a masterly study of the infinitely near “worst” singular points of a complex analytic space obtained by successive “permissible” blowing ups and of the way to tame them using certain subspaces of the ambient space. This taming proves by an induction on the dimension that there exist finite sequences of permissible blowing ups at the end of which the worst infinitely ne
出版日期Book 2018
關鍵詞algebraic geometry; resolution of singularities; desingularization theorem; complex analytic geometry; c
版次1
doihttps://doi.org/10.1007/978-4-431-49822-3
isbn_ebook978-4-431-49822-3
copyrightSpringer Japan KK, part of Springer Nature 2018
The information of publication is updating

書目名稱Complex Analytic Desingularization影響因子(影響力)




書目名稱Complex Analytic Desingularization影響因子(影響力)學科排名




書目名稱Complex Analytic Desingularization網(wǎng)絡公開度




書目名稱Complex Analytic Desingularization網(wǎng)絡公開度學科排名




書目名稱Complex Analytic Desingularization被引頻次




書目名稱Complex Analytic Desingularization被引頻次學科排名




書目名稱Complex Analytic Desingularization年度引用




書目名稱Complex Analytic Desingularization年度引用學科排名




書目名稱Complex Analytic Desingularization讀者反饋




書目名稱Complex Analytic Desingularization讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:35:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:54:48 | 只看該作者
地板
發(fā)表于 2025-3-22 08:22:09 | 只看該作者
http://image.papertrans.cn/c/image/231393.jpg
5#
發(fā)表于 2025-3-22 12:21:43 | 只看該作者
Diacylglycerol-sterol O-acyltransferase,ity (called the structure sheaf). Given two ringed spaces . and ., a . between them is a pair (., .), where . is a continuous map from . to . and . is an .-homomorphism from . to ., i.e., a collection of ring homomorphisms (mapping unity to unity) ., one for each open subset . of ., such that for every . the diagram
6#
發(fā)表于 2025-3-22 13:07:30 | 只看該作者
7#
發(fā)表于 2025-3-22 17:27:14 | 只看該作者
,Gentamicin 3′-N-acetyltransferase,This section is the natural continuation of Sect. . of Chap. .. Recall Definition . for .-trees, Definition . for ambient expansion and contraction of .-trees, and Remark . for the definitions of .-trees, .-morphisms and the category ((.-trees)).
8#
發(fā)表于 2025-3-22 21:52:28 | 只看該作者
Dietmar Schomburg,Ida Schomburg,Antje ChangA .-situation . is said to be . if there exists a sequence {.}. of compact subsets of . (see Definition . in Chap. .) such that, for every point (., .) of ., there is a point (., .) of . and an integer .?≥?1 such that (., .)?~?(., .) and (., .)?∈?., that is, .∈?.(.). A garden . is . if . is also.
9#
發(fā)表于 2025-3-23 04:46:00 | 只看該作者
10#
發(fā)表于 2025-3-23 07:06:01 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
梁河县| 铜山县| 依兰县| 金寨县| 乡城县| 永胜县| 寿光市| 屏边| 波密县| 西丰县| 离岛区| 惠来县| 乐亭县| 固安县| 扬中市| 新兴县| 修水县| 怀远县| 乳山市| 兰考县| 淄博市| 邹城市| 丹阳市| 沈阳市| 宜丰县| 海宁市| 西丰县| 凤城市| 富蕴县| 托克逊县| 安顺市| 连平县| 东台市| 泽州县| 黔西县| 阿拉善右旗| 敖汉旗| 龙里县| 通辽市| 东山县| 锦屏县|