找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analytic Desingularization; José Manuel Aroca,Heisuke Hironaka,José Luis Vicen Book 2018 Springer Japan KK, part of Springer Natur

[復(fù)制鏈接]
樓主: 喝水
11#
發(fā)表于 2025-3-23 10:33:41 | 只看該作者
12#
發(fā)表于 2025-3-23 16:48:52 | 只看該作者
13#
發(fā)表于 2025-3-23 19:07:35 | 只看該作者
Epilogue: Singularities of Differential Equations,The problem of resolution of singularities of an algebraic or analytic variety is, at least in its local formulation, close related with another problem, the parametrization of a neighborhood of a point on the variety, i.e. the problem of finding a solution, in some sense, of the system of equations defining the variety.
14#
發(fā)表于 2025-3-23 22:14:07 | 只看該作者
15#
發(fā)表于 2025-3-24 04:00:58 | 只看該作者
Springer Japan KK, part of Springer Nature 2018
16#
發(fā)表于 2025-3-24 09:46:23 | 只看該作者
Complex-Analytic Spaces and Elements,ity (called the structure sheaf). Given two ringed spaces . and ., a . between them is a pair (., .), where . is a continuous map from . to . and . is an .-homomorphism from . to ., i.e., a collection of ring homomorphisms (mapping unity to unity) ., one for each open subset . of ., such that for every . the diagram
17#
發(fā)表于 2025-3-24 14:41:52 | 只看該作者
Complex-Analytic Spaces and Elements,ity (called the structure sheaf). Given two ringed spaces . and ., a . between them is a pair (., .), where . is a continuous map from . to . and . is an .-homomorphism from . to ., i.e., a collection of ring homomorphisms (mapping unity to unity) ., one for each open subset . of ., such that for ev
18#
發(fā)表于 2025-3-24 16:26:47 | 只看該作者
The Weierstrass Preparation Theorem and Its Consequences,on, to consider a specific isomorphism ., where . is an open neighborhood of . in ., .? is an open neighborhood of . in some ., and . is the sheaf of holomorphic functions on .? such that .(.)?=?.. If . is any holomorphic function on the open subset .?.??.?, we denote again by . the pull-back functi
19#
發(fā)表于 2025-3-24 19:04:11 | 只看該作者
20#
發(fā)表于 2025-3-25 02:22:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐河县| 滦平县| 临西县| 甘肃省| 南平市| 广南县| 永清县| 西宁市| 屯留县| 沛县| 策勒县| 龙陵县| 金沙县| 灵宝市| 靖江市| 翼城县| 英吉沙县| 宜宾县| 日照市| 健康| 合作市| 新丰县| 阿拉尔市| 通河县| 凤冈县| 吕梁市| 灌云县| 汉阴县| 闵行区| 宜黄县| 和平县| 灵台县| 休宁县| 灵丘县| 澄江县| 乌什县| 岑巩县| 广河县| 三穗县| 古蔺县| 安化县|