找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Geometry; International Confer P. Dolbeault,A. Iordan,J.-M. Trépreau Conference proceedings 2000 Springer Basel AG 200

[復(fù)制鏈接]
樓主: Auditory-Nerve
41#
發(fā)表于 2025-3-28 17:30:52 | 只看該作者
42#
發(fā)表于 2025-3-28 20:36:14 | 只看該作者
https://doi.org/10.1007/978-3-662-54639-0General problem: given a surface . in ?. = {(., .)}, . = . + ., . = . + . find a Levi-flat (i.e. foliated by complex curves) hypersurface . such that . = .(.=booumdary of .).
43#
發(fā)表于 2025-3-29 01:01:01 | 只看該作者
,Présence de I’oeuvre de Pierre Lelong dans les grands thèmes de recherches d’aujourd’hui,This talk has been given for the opening of the Conference in honor of Pierre Lelong (Paris, September 1997). We have selected the main topics of P. Lelong’s research which are still up to date and productive.
44#
發(fā)表于 2025-3-29 05:48:32 | 只看該作者
45#
發(fā)表于 2025-3-29 11:12:14 | 只看該作者
Hypoellipticity: Geometrization and speculation,To any finite collection of smooth real vector fields . . in ?. we associate a metric in the phase space T??.. The relation between the asymptotic behavior of this metric and hypoellipticity of., in the smooth, real analytic, and Gevrey categories, is explored.
46#
發(fā)表于 2025-3-29 15:21:15 | 只看該作者
47#
發(fā)表于 2025-3-29 16:51:24 | 只看該作者
Pointwise nonisotropic support functions on convex domains,We construct holomorphic support functions on a smoothly bounded, convex domain of finite type in ?. which satisfy sharp, nonisotropic estimates near the fixed boundary point where the functions vanish.
48#
發(fā)表于 2025-3-29 22:26:26 | 只看該作者
,Boundaries of Levi-flat hypersurfaces of ?2,General problem: given a surface . in ?. = {(., .)}, . = . + ., . = . + . find a Levi-flat (i.e. foliated by complex curves) hypersurface . such that . = .(.=booumdary of .).
49#
發(fā)表于 2025-3-30 03:49:57 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/c/image/231375.jpg
50#
發(fā)表于 2025-3-30 06:56:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丘北县| 璧山县| 宁南县| 诏安县| 黄平县| 铅山县| 昌都县| 海阳市| 泗水县| 蒙城县| 临夏市| 莆田市| 资兴市| 桃园市| 元氏县| 合江县| 伊金霍洛旗| 尼木县| 宝丰县| 思茅市| 会昌县| 金秀| 云南省| 汨罗市| 友谊县| 府谷县| 盐城市| 千阳县| 南通市| 来凤县| 高清| 唐河县| 富民县| 宁晋县| 焦作市| 门源| 沂源县| 湖南省| 贺州市| 葫芦岛市| 重庆市|