找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Geometry; Vincenzo Ancona,Alessandro Silva Book 1993 Springer Science+Business Media New York 1993 Invariant.Manifold

[復(fù)制鏈接]
樓主: children
41#
發(fā)表于 2025-3-28 17:32:12 | 只看該作者
A Problem List on Vector Bundles, volume). Such lists stimulate research, and give more opportunities for researchers to disseminate their results among interested people. Furthermore, such lists can include relevant references, not all of which might be known to a young, isolated researcher.
42#
發(fā)表于 2025-3-28 20:30:52 | 只看該作者
Overview: 978-1-4757-9773-2978-1-4757-9771-8
43#
發(fā)表于 2025-3-29 00:13:38 | 只看該作者
,Wo komme ich her – lokal und kulturell?,e induced map of local rings . . → . . has property P. In this chapter we give a criterion for ?(.) being constructible (resp., Zariski open) in .. Moreover, we verify this criterion for a wide class of properties P.
44#
發(fā)表于 2025-3-29 04:22:28 | 只看該作者
https://doi.org/10.57088/978-3-7329-9209-6trum of . .(Ω) (corona problem) has attracted some attention. The answer is known to be affirmative for many open sets in C ; see Ref. 4 for a discussion. The answer is not known in ?. . ≥ 2 even for the ball or the polydisk.
45#
發(fā)表于 2025-3-29 09:11:04 | 只看該作者
46#
發(fā)表于 2025-3-29 11:25:33 | 只看該作者
https://doi.org/10.1007/978-3-662-58125-4 volume). Such lists stimulate research, and give more opportunities for researchers to disseminate their results among interested people. Furthermore, such lists can include relevant references, not all of which might be known to a young, isolated researcher.
47#
發(fā)表于 2025-3-29 17:28:49 | 只看該作者
Wissenschaft und Verantwortung,Let . be a complex manifold of dimension . and let .→ . be a holomorphic vector bundle. Given a complex submanifold . of codimension 1, let res. be the residue homomorphism from ...) to ...), where ...) denotes the ?0304-cohomology group of type (.). The purpose of this chapter is to establish the following theorem.
48#
發(fā)表于 2025-3-29 21:28:59 | 只看該作者
49#
發(fā)表于 2025-3-30 00:43:29 | 只看該作者
50#
發(fā)表于 2025-3-30 07:12:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新余市| 商水县| 农安县| 镇远县| 连南| 安平县| 根河市| 微山县| 华宁县| 静乐县| 汪清县| 东宁县| 平潭县| 鹿泉市| 文登市| 靖州| 滦南县| 济阳县| 洛扎县| 区。| 阜新| 朝阳区| 平乐县| 卓资县| 屏东市| 共和县| 泰安市| 泽州县| 璧山县| 祁连县| 新余市| 舟曲县| 靖州| 泽州县| 虎林市| 巨野县| 什邡市| 景谷| 邢台县| 武邑县| 台北市|