找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Geometry; Vincenzo Ancona,Alessandro Silva Book 1993 Springer Science+Business Media New York 1993 Invariant.Manifold

[復制鏈接]
樓主: children
31#
發(fā)表于 2025-3-26 21:30:25 | 只看該作者
Wissenschaft und Verantwortung,Due to Serre’s correspondence the most interesting case is codim . = 2. In fact, in this case even 4-folds in ?. should be complete intersections. For . ≤ 5 the remaining cases of “l(fā)ow codimension” are surfaces in ?. and 3-folds in ?.. For surfaces in ?., Ellingsrud and Peskine [8] have established
32#
發(fā)表于 2025-3-27 01:46:05 | 只看該作者
Sprachw?rterbücher im Nationalsozialismus the viewpoint of deformation theory, he suggested, in 1958, investigating the Petersson inner product on the space of holomorphic quadratic differentials. He conjectured that it induced a K?hler metric on the Teichmüller space. After proving this property, Ahlfors showed, in 1961, that the holomorp
33#
發(fā)表于 2025-3-27 07:36:29 | 只看該作者
34#
發(fā)表于 2025-3-27 12:58:27 | 只看該作者
35#
發(fā)表于 2025-3-27 13:59:38 | 只看該作者
University Series in Mathematicshttp://image.papertrans.cn/c/image/231374.jpg
36#
發(fā)表于 2025-3-27 18:41:10 | 只看該作者
https://doi.org/10.1007/978-1-4757-9771-8Invariant; Manifold; algebra; calculus; geometry
37#
發(fā)表于 2025-3-28 00:16:19 | 只看該作者
38#
發(fā)表于 2025-3-28 02:50:19 | 只看該作者
39#
發(fā)表于 2025-3-28 07:43:02 | 只看該作者
40#
發(fā)表于 2025-3-28 13:39:53 | 只看該作者
,Boundedness for Nongeneral-Type 3-Folds in ?5,Due to Serre’s correspondence the most interesting case is codim . = 2. In fact, in this case even 4-folds in ?. should be complete intersections. For . ≤ 5 the remaining cases of “l(fā)ow codimension” are surfaces in ?. and 3-folds in ?.. For surfaces in ?., Ellingsrud and Peskine [8] have established the following beautiful boundedness result.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
顺平县| 凤冈县| 鸡泽县| 克山县| 右玉县| 瓮安县| 秦安县| 南郑县| 东港市| 新巴尔虎左旗| 沛县| 信丰县| 崇明县| 东乌珠穆沁旗| 澄江县| 婺源县| 锦屏县| 桐柏县| 三河市| 云龙县| 上饶县| 荔浦县| 海林市| 隆昌县| 巢湖市| 贡嘎县| 剑川县| 施甸县| 木里| 偃师市| 宕昌县| 鸡西市| 闵行区| 漠河县| 卢湾区| 沈阳市| 高清| 绥滨县| 专栏| 肃北| 灵丘县|