找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compactifications of Symmetric Spaces; Yves Guivarc’h,Lizhen Ji,J. C. Taylor Book 1998 Birkh?user Boston 1998 Algebra.Compactification.Fin

[復(fù)制鏈接]
樓主: HABIT
41#
發(fā)表于 2025-3-28 15:11:40 | 只看該作者
42#
發(fā)表于 2025-3-28 18:57:24 | 只看該作者
The Satake-Furstenberg Compactifications,tomorphic forms and of representations. Furstenberg [F3] considered boundary value problems at infinity for the Laplacian on symmetric spaces and was led to isomorphic compactifications, as was shown by Moore [M8]. While these two families of compactifications are isomorphic, they are defined by qui
43#
發(fā)表于 2025-3-28 23:13:55 | 只看該作者
,The Karpelevi? Compactification,flat . · . in ., a non-inductive characterization of the closure . of . is obtained (see Theorem 5.6). The nature of the Karpelevi? topology restricted to the flat is clarified by the introduction of the class of K- fundament al sequences. Using this concept, one shows that (mathtype) is isomorphic
44#
發(fā)表于 2025-3-29 04:48:57 | 只看該作者
,The Martin Compactification , ∪ ? ,(λ),r the Laplace—Beltrami operator on a symmetric space of non-compact type. He restricted his attention to the space SL(.,C)/SU(.). This space is especially amenable to a study of the Martin compactification because one has an explicit formula for the Green function Gx that is a consequence of a remar
45#
發(fā)表于 2025-3-29 08:05:45 | 只看該作者
46#
發(fā)表于 2025-3-29 12:30:03 | 只看該作者
47#
發(fā)表于 2025-3-29 18:07:34 | 只看該作者
Integral Representation of Positive Eigenfunctions of Convolution Operators,enfunctions. When . is a general symmetric space of non-compact type, these eigenfunctions were first determined by Karpelevi? [K3]. In this chapter they are determined by using convolution equations (see Theorems 13.1, 13.23, and 13.28), a method first used by Furstenberg for semisimple Lie groups.
48#
發(fā)表于 2025-3-29 23:45:39 | 只看該作者
49#
發(fā)表于 2025-3-30 00:00:18 | 只看該作者
50#
發(fā)表于 2025-3-30 08:06:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河池市| 台北市| 新野县| 南溪县| 武乡县| 湘潭县| 阜城县| 晴隆县| 庄河市| 禄劝| 仪陇县| 武川县| 昭通市| 彰化市| 新兴县| 朝阳区| 南部县| 三穗县| 奉贤区| 庆元县| 东乡| 新乐市| 庆云县| 富平县| 门头沟区| 泰宁县| 宜川县| 湘西| 泰来县| 方城县| 石屏县| 青海省| 瑞丽市| 香港| 丹巴县| 桃园市| 娱乐| 沧源| 罗甸县| 平武县| 靖西县|