找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compactifications of Symmetric Spaces; Yves Guivarc’h,Lizhen Ji,J. C. Taylor Book 1998 Birkh?user Boston 1998 Algebra.Compactification.Fin

[復(fù)制鏈接]
查看: 39578|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:53:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Compactifications of Symmetric Spaces
編輯Yves Guivarc’h,Lizhen Ji,J. C. Taylor
視頻videohttp://file.papertrans.cn/231/230806/230806.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Compactifications of Symmetric Spaces;  Yves Guivarc’h,Lizhen Ji,J. C. Taylor Book 1998 Birkh?user Boston 1998 Algebra.Compactification.Fin
描述.The concept of symmetric space is of central importance in many branches of mathematics. Compactifications of these spaces have been studied from the points of view of representation theory, geometry, and random walks. This work is devoted to the study of the interrelationships among these various compactifications and, in particular, focuses on the martin compactifications. It is the first exposition to treat compactifications of symmetric spaces systematically and to uniformized the various points of view...Key features:..* definition and detailed analysis of the Martin compactifications..* new geometric Compactification, defined in terms of the Tits building, that coincides with the Martin Compactification at the bottom of the positive spectrum...* geometric, non-inductive, description of the Karpelevic Compactification..* study of the well-know isomorphism between the Satake compactifications and the Furstenberg compactifications..* systematic and clear progression of topics from geometry to analysis, and finally to random walks..The work is largely self-contained, with comprehensive references to the literature. It is an excellent resource for both researchers and graduate st
出版日期Book 1998
關(guān)鍵詞Algebra; Compactification; Finite; Morphism; Spaces; Symmetries; Topology; calculus; function; geometry; mathe
版次1
doihttps://doi.org/10.1007/978-1-4612-2452-5
isbn_softcover978-1-4612-7542-8
isbn_ebook978-1-4612-2452-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston 1998
The information of publication is updating

書目名稱Compactifications of Symmetric Spaces影響因子(影響力)




書目名稱Compactifications of Symmetric Spaces影響因子(影響力)學(xué)科排名




書目名稱Compactifications of Symmetric Spaces網(wǎng)絡(luò)公開度




書目名稱Compactifications of Symmetric Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Compactifications of Symmetric Spaces被引頻次




書目名稱Compactifications of Symmetric Spaces被引頻次學(xué)科排名




書目名稱Compactifications of Symmetric Spaces年度引用




書目名稱Compactifications of Symmetric Spaces年度引用學(xué)科排名




書目名稱Compactifications of Symmetric Spaces讀者反饋




書目名稱Compactifications of Symmetric Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:37 | 只看該作者
https://doi.org/10.1007/978-3-322-95780-1ious invariants are the Laplace—Beltrami operator . and the volume measure .. The operator — L acting on L.(.) is a non-negative operator and has a non-negative lower bound λ. to its spectrum. It is known (cf. Sullivan [S4], Taylor [T3, p. 131]) that, for λ ≤ λ 0, the operator . + λ . has positive global solutions.
板凳
發(fā)表于 2025-3-22 02:20:39 | 只看該作者
地板
發(fā)表于 2025-3-22 06:17:57 | 只看該作者
5#
發(fā)表于 2025-3-22 09:55:56 | 只看該作者
6#
發(fā)表于 2025-3-22 15:24:23 | 只看該作者
7#
發(fā)表于 2025-3-22 19:06:07 | 只看該作者
https://doi.org/10.1007/978-3-322-95780-1ious invariants are the Laplace—Beltrami operator . and the volume measure .. The operator — L acting on L.(.) is a non-negative operator and has a non-negative lower bound λ. to its spectrum. It is known (cf. Sullivan [S4], Taylor [T3, p. 131]) that, for λ ≤ λ 0, the operator . + λ . has positive g
8#
發(fā)表于 2025-3-22 21:14:46 | 只看該作者
Soziale Kontrolle und Individualisierungc subgroups of .. In this chapter the relation between these subgroups and sets of simple roots is discussed. Additional details for matters treated in this chapter may be found in Helgason [H2] or Warner [W1]. This chapter begins by introducing the two basic decompositions of ..
9#
發(fā)表于 2025-3-23 03:25:24 | 只看該作者
10#
發(fā)表于 2025-3-23 08:00:39 | 只看該作者
Soziale Kosten von Energiesystemen,tomorphic forms and of representations. Furstenberg [F3] considered boundary value problems at infinity for the Laplacian on symmetric spaces and was led to isomorphic compactifications, as was shown by Moore [M8]. While these two families of compactifications are isomorphic, they are defined by qui
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华坪县| 浦北县| 南宫市| 霞浦县| 扶风县| 澄江县| 平远县| 铁岭市| 潮安县| 乌拉特前旗| 沙河市| 武隆县| 旬邑县| 双柏县| 酒泉市| 辽宁省| 渑池县| 云阳县| 宜丰县| 郎溪县| 和顺县| 壤塘县| 永胜县| 滨海县| 武乡县| 昆明市| 铜山县| 姜堰市| 简阳市| 庆安县| 广南县| 杭州市| 会泽县| 冀州市| 金乡县| 阿克| 福建省| 金塔县| 图木舒克市| 卢氏县| 安化县|