找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compactifications of Symmetric Spaces; Yves Guivarc’h,Lizhen Ji,J. C. Taylor Book 1998 Birkh?user Boston 1998 Algebra.Compactification.Fin

[復(fù)制鏈接]
樓主: HABIT
21#
發(fā)表于 2025-3-25 05:14:21 | 只看該作者
https://doi.org/10.1007/978-3-663-11406-2The main questions previously examined can also be considered in the general framework of random walks. If one takes into account the results in Chapters IX and X, this leads to new proofs and new formulations of many of the results discussed earlier.
22#
發(fā)表于 2025-3-25 09:58:25 | 只看該作者
23#
發(fā)表于 2025-3-25 13:13:37 | 只看該作者
24#
發(fā)表于 2025-3-25 18:27:44 | 只看該作者
,Harnack Inequality, Martin’s Method and The Positive Spectrum for Random Walks,The study of positive eigenfunctions of the Laplace operator . is closely related to the study of convolution equations defined by probability measures .. With applications to other non-semisimple Lie groups in mind, several results for general convolution equations on a locally compact metrizable group . are established in this chapter.
25#
發(fā)表于 2025-3-25 20:57:54 | 只看該作者
26#
發(fā)表于 2025-3-26 02:31:57 | 只看該作者
Introduction,ious invariants are the Laplace—Beltrami operator . and the volume measure .. The operator — L acting on L.(.) is a non-negative operator and has a non-negative lower bound λ. to its spectrum. It is known (cf. Sullivan [S4], Taylor [T3, p. 131]) that, for λ ≤ λ 0, the operator . + λ . has positive global solutions.
27#
發(fā)表于 2025-3-26 06:36:47 | 只看該作者
28#
發(fā)表于 2025-3-26 10:13:05 | 只看該作者
29#
發(fā)表于 2025-3-26 12:52:02 | 只看該作者
30#
發(fā)表于 2025-3-26 19:12:39 | 只看該作者
Soziale Kosten von Energiesystemen, turns out that this sphere .(∞) at infinity may be given the structure of a simplicial complex Δ(.) (see Theorem 3.15 and Proposition 3.18) with respect to which it is a spherical Tits building (Definition 3.14). This is accomplished by identifying the sets of points in X(∞) stabilized by the various parabolic subgroups (see Proposition 3.9).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濉溪县| 梨树县| 垫江县| 渭源县| 乌海市| 罗江县| 昂仁县| 奉新县| 清徐县| 广宁县| 静宁县| 乐昌市| 浦城县| 定兴县| 永城市| 台中县| 龙泉市| 绵竹市| 义乌市| 裕民县| 建宁县| 德昌县| 商都县| 太仓市| 登封市| 同仁县| 怀柔区| 井冈山市| 扎囊县| 德惠市| 宜阳县| 当阳市| 成武县| 桦南县| 余江县| 舞钢市| 东台市| 昆山市| 阿拉善盟| 天镇县| 湾仔区|