找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact Riemann Surfaces; Raghavan Narasimhan Book 1992 Springer Basel AG 1992 Finite.Fundamental theorem of calculus.Morphism.algebra.dif

[復(fù)制鏈接]
樓主: Monsoon
41#
發(fā)表于 2025-3-28 18:02:22 | 只看該作者
https://doi.org/10.1007/978-3-531-91370-4 give here is due to Henrik Martens [12]. There are more “geometric” proofs, some of which will be found in Griffiths-Harris [9] or Arbarello-Cornalba-Griffiths-Harris [10]. We begin with a general fact about complex tori.
42#
發(fā)表于 2025-3-28 22:34:28 | 只看該作者
The Sheaf of Germs of Holomorphic Functions,ch pairs (., .) and (., .) are said to be equivalent, and define the same germ of holomorphic function at a, if there exists an open neighbourhood . of ., . ? . ∩ ., such that . = .. An equivalence class is called a germ of holomorphic function at .; the class of a pair (.) is called the germ of . a
43#
發(fā)表于 2025-3-29 02:30:10 | 只看該作者
The Riemann Surface of an Algebraic Function,, then .is a finite covering (of .-sheets). In particular, π. (.. ? .) has only finitely many connected components. Moreover, if . is a connected component of .’, then π’|. is again a covering, and so maps . onto P. ? .. Hence .’ has only finitely many connected components. (We shall see below that
44#
發(fā)表于 2025-3-29 07:08:57 | 只看該作者
45#
發(fā)表于 2025-3-29 10:05:14 | 只看該作者
46#
發(fā)表于 2025-3-29 13:22:25 | 只看該作者
47#
發(fā)表于 2025-3-29 18:01:24 | 只看該作者
https://doi.org/10.1007/978-3-663-11402-4f ., . ? . ∩ ., such that . = .. An equivalence class is called a germ of holomorphic function at .; the class of a pair (.) is called the germ of . at . and denoted by ... The value at . of .. is defined by ..(.) .(.) for any pair (.) defining ...
48#
發(fā)表于 2025-3-29 21:03:21 | 只看該作者
,Das europ?ische Mehrebenensystem,ine (or even vector) bundle on ?. is holomorphically trivial. Let . be a trivialisation. If λ ∈ Λ and . ∈ ?., then the isomorphisms . differ by multiplication by a constant since . if we denote this constant by φλ(.), then for λ ∈ Λ, . →φ.(.) is a holomorphic function without zeros, and we have, for λ, . ∈ Λ,
49#
發(fā)表于 2025-3-30 00:56:51 | 只看該作者
The Sheaf of Germs of Holomorphic Functions,f ., . ? . ∩ ., such that . = .. An equivalence class is called a germ of holomorphic function at .; the class of a pair (.) is called the germ of . at . and denoted by ... The value at . of .. is defined by ..(.) .(.) for any pair (.) defining ...
50#
發(fā)表于 2025-3-30 06:09:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都江堰市| 施秉县| 潍坊市| 玉田县| 芜湖市| 饶河县| 宜章县| 牙克石市| 通道| 武义县| 丘北县| 宿迁市| 伊川县| 噶尔县| 马鞍山市| 崇阳县| 彭阳县| 新巴尔虎左旗| 庆城县| 三门峡市| 延津县| 莱芜市| 益阳市| 博罗县| 祥云县| 嘉义市| 和静县| 泸定县| 竹山县| 西乌珠穆沁旗| 吉林省| 枣阳市| 太仆寺旗| 冀州市| 子洲县| 庆云县| 延边| 德阳市| 铜鼓县| 洛隆县| 闸北区|