找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact Riemann Surfaces; Raghavan Narasimhan Book 1992 Springer Basel AG 1992 Finite.Fundamental theorem of calculus.Morphism.algebra.dif

[復(fù)制鏈接]
樓主: Monsoon
31#
發(fā)表于 2025-3-26 22:38:53 | 只看該作者
Bilinear Relations,Before proceeding further, we recall some facts about compact oriented surfaces. We shall not prove them here; proofs can be found in, for example [6].
32#
發(fā)表于 2025-3-27 01:58:29 | 只看該作者
,The Jacobian and Abel’s Theorem,Let . be a compact Riemann surface of genus . ≥ 1. We use the description of . in terms of a convex 4. ? gon as in §14, and the corresponding basis .., .. of ..(.).
33#
發(fā)表于 2025-3-27 08:08:04 | 只看該作者
The Theta Divisor,In this section, we study the influence of the theta divisor on the Riemann surface .. The results were given by Riemann in his fundamental paper on abelian functions. The proofs given here are not very different from Riemann’s.
34#
發(fā)表于 2025-3-27 10:31:03 | 只看該作者
,Riemann’s Theorem on the Singularities of Θ,Riemann’s singularity theorem expresses the order of vanishing of the ?-function at a point ζ . Θ in terms of dim |.|, where . ≥ 0 is a divisor of degree . ? 1 with ζ ? κ = .. Riemann proves this by relating this order to the vanishing of ? on sets of the form .. ? .. ? ζ (.).
35#
發(fā)表于 2025-3-27 13:54:15 | 只看該作者
Some Geometry of Curves in Projective Space,holomorphic line bundle as on a Riemann surface: if {..} is an open covering of . is such that .. ∩ . = {. ∈ ....(.) = 0, .. ≠ 0 at any pomit of ..}, then .. = ../.. is holomorphic, nowhere zero on .. ∩ .. and form the transition functions for a line bundle .. The family {..} define the standard section .. of . (whose divisor is .).
36#
發(fā)表于 2025-3-27 20:05:36 | 只看該作者
37#
發(fā)表于 2025-3-27 22:00:32 | 只看該作者
https://doi.org/10.1007/978-3-663-11402-4ch pairs (., .) and (., .) are said to be equivalent, and define the same germ of holomorphic function at a, if there exists an open neighbourhood . of ., . ? . ∩ ., such that . = .. An equivalence class is called a germ of holomorphic function at .; the class of a pair (.) is called the germ of . a
38#
發(fā)表于 2025-3-28 04:34:08 | 只看該作者
39#
發(fā)表于 2025-3-28 07:56:21 | 只看該作者
https://doi.org/10.1007/978-3-531-92469-4holomorphic line bundle as on a Riemann surface: if {..} is an open covering of . is such that .. ∩ . = {. ∈ ....(.) = 0, .. ≠ 0 at any pomit of ..}, then .. = ../.. is holomorphic, nowhere zero on .. ∩ .. and form the transition functions for a line bundle .. The family {..} define the standard sec
40#
發(fā)表于 2025-3-28 12:11:20 | 只看該作者
,Das europ?ische Mehrebenensystem, torus. Let . be a holomorphic line bundle on ., and π: ?. → . the projection. A well-known theorem in complex analysis asserts that any holomorphic line (or even vector) bundle on ?. is holomorphically trivial. Let . be a trivialisation. If λ ∈ Λ and . ∈ ?., then the isomorphisms . differ by multip
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南投县| 涡阳县| 罗田县| 深水埗区| 闽侯县| 昭觉县| 驻马店市| 舟山市| 静安区| 新邵县| 丰都县| 纳雍县| 曲靖市| 徐闻县| 新郑市| 虎林市| 彩票| 博爱县| 兰坪| 秦安县| 靖西县| 辽阳县| 富源县| 运城市| 龙口市| 富川| 奉化市| 筠连县| 鞍山市| 沙洋县| 六枝特区| 宜川县| 怀柔区| 慈溪市| 双城市| 浙江省| 阿坝县| 望城县| 五莲县| 嵊州市| 斗六市|