找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact Lie Groups; Mark R. Sepanski Textbook 2007 Springer-Verlag New York 2007 Group theory.Lie algebra.Representation theory.algebra.ca

[復(fù)制鏈接]
樓主: 補給線
11#
發(fā)表于 2025-3-23 13:27:30 | 只看該作者
12#
發(fā)表于 2025-3-23 17:23:01 | 只看該作者
Lie Algebras,ce to the identity. The resulting object is called a Lie algebra. Simply by virtue of the fact that vector spaces are simpler than groups, the Lie algebra provides a powerful tool for studying Lie groups and their representations.
13#
發(fā)表于 2025-3-23 20:12:29 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:02 | 只看該作者
Highest Weight Theory, Two important problems remain. The first is to parametrize ? in a reasonable manner and the second is to individually construct each irreducible representation in a natural way. The solution to both of these problems is closely tied to the notion of . weights.
15#
發(fā)表于 2025-3-24 05:32:35 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:36 | 只看該作者
17#
發(fā)表于 2025-3-24 12:50:49 | 只看該作者
18#
發(fā)表于 2025-3-24 15:54:52 | 只看該作者
https://doi.org/10.1007/978-3-322-94211-1By examining the joint eigenvalues of a Cartan subalgebra under the ad-action, a great deal of information about a Lie group and its Lie algebra may be encoded. For instance, the fundamental group can be read off from this data (§ 6.3.3). Moreover, this encoding is a key step in the classification of irreducible representations (§7).
19#
發(fā)表于 2025-3-24 19:06:35 | 只看該作者
20#
發(fā)表于 2025-3-25 00:27:18 | 只看該作者
Representations,Lie groups are often the abstract embodiment of symmetry. However, most frequently they manifest themselves through an action on a vector space which will be called a representation. In this chapter we confine ourselves to the study of finite-dimensional representations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同心县| 新巴尔虎左旗| 松原市| 乌鲁木齐县| 正定县| 保康县| 铁岭市| 福贡县| 金平| 陆川县| 平顶山市| 吴川市| 蕉岭县| 磐石市| 宜君县| 增城市| 建湖县| 泾阳县| 赤峰市| 葵青区| 剑阁县| 桐柏县| 准格尔旗| 麦盖提县| 四会市| 治多县| 犍为县| 如皋市| 米脂县| 怀宁县| 集贤县| 皋兰县| 长垣县| 平塘县| 敖汉旗| 和林格尔县| 油尖旺区| 禹州市| 广宁县| 德江县| 沙田区|