找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact Lie Groups; Mark R. Sepanski Textbook 2007 Springer-Verlag New York 2007 Group theory.Lie algebra.Representation theory.algebra.ca

[復(fù)制鏈接]
查看: 17297|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:20:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Compact Lie Groups
編輯Mark R. Sepanski
視頻videohttp://file.papertrans.cn/231/230784/230784.mp4
概述Provides an approach that minimizes advanced prerequisites.Self-contained and systematic exposition requiring no previous exposure to Lie theory.Advances quickly to the Peter-Weyl Theorem and its corr
叢書(shū)名稱Graduate Texts in Mathematics
圖書(shū)封面Titlebook: Compact Lie Groups;  Mark R. Sepanski Textbook 2007 Springer-Verlag New York 2007 Group theory.Lie algebra.Representation theory.algebra.ca
描述.Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Included is the construction of the Spin groups, Schur Orthogonality, the Peter-Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel-Weil Theorem. The necessary Lie algebra theory is also developed in the text with a streamlined approach focusing on linear Lie groups...Key Features are: - Provides an approach that minimizes advanced prerequisites; - Self-contained and systematic exposition requiring no previous exposure to Lie theory; -Advances quickly to the Peter-Weyl Theorem and its corresponding Fourier theory; - Streamlined Lie algebra discussion reduces the differential geometry prerequisite and allows a more rapid transition to the classification and construction of representations - Exercises sprinkled throughout...This beginning graduate lev
出版日期Textbook 2007
關(guān)鍵詞Group theory; Lie algebra; Representation theory; algebra; calculus; differential geometry; manifold; maxim
版次1
doihttps://doi.org/10.1007/978-0-387-49158-5
isbn_softcover978-1-4419-2138-3
isbn_ebook978-0-387-49158-5Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer-Verlag New York 2007
The information of publication is updating

書(shū)目名稱Compact Lie Groups影響因子(影響力)




書(shū)目名稱Compact Lie Groups影響因子(影響力)學(xué)科排名




書(shū)目名稱Compact Lie Groups網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Compact Lie Groups網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Compact Lie Groups被引頻次




書(shū)目名稱Compact Lie Groups被引頻次學(xué)科排名




書(shū)目名稱Compact Lie Groups年度引用




書(shū)目名稱Compact Lie Groups年度引用學(xué)科排名




書(shū)目名稱Compact Lie Groups讀者反饋




書(shū)目名稱Compact Lie Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:05:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:38:34 | 只看該作者
https://doi.org/10.1007/978-3-322-94211-1 Two important problems remain. The first is to parametrize ? in a reasonable manner and the second is to individually construct each irreducible representation in a natural way. The solution to both of these problems is closely tied to the notion of . weights.
地板
發(fā)表于 2025-3-22 07:52:02 | 只看該作者
5#
發(fā)表于 2025-3-22 11:21:23 | 只看該作者
6#
發(fā)表于 2025-3-22 14:01:23 | 只看該作者
Compact Lie Groups978-0-387-49158-5Series ISSN 0072-5285 Series E-ISSN 2197-5612
7#
發(fā)表于 2025-3-22 17:57:03 | 只看該作者
8#
發(fā)表于 2025-3-22 23:14:58 | 只看該作者
9#
發(fā)表于 2025-3-23 02:46:01 | 只看該作者
10#
發(fā)表于 2025-3-23 07:50:02 | 只看該作者
https://doi.org/10.1007/978-0-387-49158-5Group theory; Lie algebra; Representation theory; algebra; calculus; differential geometry; manifold; maxim
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
揭西县| 龙井市| 巴林右旗| 石棉县| 家居| 三穗县| 尼勒克县| 无锡市| 杭锦旗| 商都县| 会理县| 五指山市| 鄂托克前旗| 都匀市| 苏州市| 榆林市| 从化市| 莎车县| 永济市| 于田县| 凤凰县| 金寨县| 临颍县| 武功县| 宁明县| 平南县| 华池县| 达孜县| 明溪县| 沈丘县| 利辛县| 东莞市| 吉水县| 宜丰县| 偏关县| 濮阳县| 万山特区| 霍邱县| 安泽县| 龙川县| 安西县|