找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combined Measure and Shift Invariance Theory of Time Scales and Applications; Chao Wang,Ravi P. Agarwal Book 2022 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: concession
21#
發(fā)表于 2025-3-25 04:08:27 | 只看該作者
22#
發(fā)表于 2025-3-25 11:24:14 | 只看該作者
Ultrastructure of Smooth Musclea integration on time scales are introduced including some basic results of Riemann integral and fundamental theorems of calculus. In Sect. 1.2, stochastic calculus and some basic results of stochastic dynamic equations on time scales are provided. Section 1.3 is mainly devoted to introducing the co
23#
發(fā)表于 2025-3-25 13:24:39 | 只看該作者
Physical Properties of Contractile Systemsd ?.-measure, and related integrals. In Sects. 2.1–2.3, concept of ?.-measurability is introduced and combined measure theory on time scales is presented. Particularly, .-measure theory and ?-measure theory can be unified by this combined theory. Moreover, some criteria for ?.-measurability of a set
24#
發(fā)表于 2025-3-25 16:57:56 | 只看該作者
25#
發(fā)表于 2025-3-25 21:16:35 | 只看該作者
26#
發(fā)表于 2025-3-26 03:23:03 | 只看該作者
27#
發(fā)表于 2025-3-26 06:36:16 | 只看該作者
28#
發(fā)表于 2025-3-26 09:20:43 | 只看該作者
Theodor Burdyga,Richard J. Langsults of the .-almost periodic solutions and ..-order .-almost periodic solutions of a general dynamic equations are established under matched spaces of time scales. Particularly, the basic results of almost periodic problems of the .-dynamic equations on a quantum time scale are included as the spe
29#
發(fā)表于 2025-3-26 14:19:05 | 只看該作者
Dirk F. van Helden,Mohammad S. Imtiazre discussed systematically. In Sects. 8.1–8.2, the weighted pseudo .-almost automorphic solutions and the ..-order weighted pseudo .-almost automorphic solutions of the general inhomogeneous dynamic equations are studied. Moreover, In Sect. 8.3, the almost automorphy of the solutions to dynamic equ
30#
發(fā)表于 2025-3-26 20:51:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆城县| 岑溪市| 磐石市| 寿光市| 东港市| 德阳市| 新宾| 海城市| 高陵县| 黔南| 峡江县| 墨脱县| 安宁市| 青岛市| 库尔勒市| 军事| 宝山区| 昌乐县| 景洪市| 六安市| 苏尼特右旗| 昭通市| 镇远县| 东阿县| 集贤县| 井陉县| 成都市| 于田县| 松原市| 全椒县| 山丹县| 彝良县| 志丹县| 清丰县| 饶阳县| 丽江市| 林甸县| 祁门县| 开平市| 德格县| 耿马|