找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combined Measure and Shift Invariance Theory of Time Scales and Applications; Chao Wang,Ravi P. Agarwal Book 2022 The Editor(s) (if applic

[復(fù)制鏈接]
查看: 40452|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:01:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Combined Measure and Shift Invariance Theory of Time Scales and Applications
編輯Chao Wang,Ravi P. Agarwal
視頻videohttp://file.papertrans.cn/231/230072/230072.mp4
概述Develops a theory of combined measure and shift-invariance of time scales.Illustrates with relevant applications to shift functions and dynamic equations.Emphasizes the power of this theory for accura
叢書(shū)名稱(chēng)Developments in Mathematics
圖書(shū)封面Titlebook: Combined Measure and Shift Invariance Theory of Time Scales and Applications;  Chao Wang,Ravi P. Agarwal Book 2022 The Editor(s) (if applic
描述This monograph is devoted to developing a theory of combined measure and shift invariance of time scales with the related applications to shift functions and dynamic equations. The study of shift closeness of time scales is significant to investigate the shift functions such as the periodic functions, the almost periodic functions, the almost automorphic functions, and their generalizations with many relevant applications in dynamic equations on arbitrary time scales..First proposed by S. Hilger, the time scale theory—a unified view of continuous and discrete analysis—has been widely used to study various classes of dynamic equations and models in real-world applications. Measure theory based on time scales, in its turn, is of great power in analyzing functions on time scales or hybrid domains.?.As a new and exciting type of mathematics—and more comprehensive and versatile than the traditional theories of differential and difference equations—, the time scale theory can precisely depict the continuous-discrete hybrid processes and is an optimal way forward for accurate mathematical modeling in applied sciences such as physics, chemical technology, population dynamics, biotechnology
出版日期Book 2022
關(guān)鍵詞functional analysis; ordinary differential equations; ODE; measure theory; time scale theory; theory of t
版次1
doihttps://doi.org/10.1007/978-3-031-11619-3
isbn_softcover978-3-031-11621-6
isbn_ebook978-3-031-11619-3Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Combined Measure and Shift Invariance Theory of Time Scales and Applications影響因子(影響力)




書(shū)目名稱(chēng)Combined Measure and Shift Invariance Theory of Time Scales and Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Combined Measure and Shift Invariance Theory of Time Scales and Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Combined Measure and Shift Invariance Theory of Time Scales and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Combined Measure and Shift Invariance Theory of Time Scales and Applications被引頻次




書(shū)目名稱(chēng)Combined Measure and Shift Invariance Theory of Time Scales and Applications被引頻次學(xué)科排名




書(shū)目名稱(chēng)Combined Measure and Shift Invariance Theory of Time Scales and Applications年度引用




書(shū)目名稱(chēng)Combined Measure and Shift Invariance Theory of Time Scales and Applications年度引用學(xué)科排名




書(shū)目名稱(chēng)Combined Measure and Shift Invariance Theory of Time Scales and Applications讀者反饋




書(shū)目名稱(chēng)Combined Measure and Shift Invariance Theory of Time Scales and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:28:17 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:53:57 | 只看該作者
地板
發(fā)表于 2025-3-22 06:28:12 | 只看該作者
5#
發(fā)表于 2025-3-22 09:47:56 | 只看該作者
Almost Periodic Functions Under Matched Spaces of Time Scales,periodic functions under matched spaces is developed. In Sect. 4.3, a notion of .-almost periodic stochastic process in shift operators is addressed and some basic results are presented. In Sect. 4.4, a generalized notion of .-almost periodic functions called ..-order .-almost periodic functions is proposed and investigated.
6#
發(fā)表于 2025-3-22 13:32:48 | 只看該作者
7#
發(fā)表于 2025-3-22 18:34:11 | 只看該作者
Almost Automorphic Dynamic Equations Under Matched Spaces,ic solutions of the general inhomogeneous dynamic equations are studied. Moreover, In Sect. 8.3, the almost automorphy of the solutions to dynamic equations with shift operators is analyzed and some basic results of the discontinuous cases are established.
8#
發(fā)表于 2025-3-23 01:04:43 | 只看該作者
,,-Semigroup and Stepanov-Like Almost Automorphic Functions on Hybrid Time Scales,d. Moreover, the weak automorphy of such functions in the quantum case is discussed. Sections 6.4 and 6.5 are focused on introducing the theory of shift-semigroup and Stepanov-like almost automorphic functions under the matched space of time scales.
9#
發(fā)表于 2025-3-23 04:13:47 | 只看該作者
Almost Periodic Dynamic Equations Under Matched Spaces,cial case. In Sects. 7.1–7.3, by using the developed theory of matched spaces of time scales, the basic theory of dynamic equations under matched space of time scales is established and some effective methods are provided to study the almost periodic solutions of dynamic equations on hybrid time scales.
10#
發(fā)表于 2025-3-23 06:17:11 | 只看該作者
Applications to Dynamics Models Under Matched Spaces,l are investigated. In Sect. 9.2, the mean-square almost periodic stochastic process with shift operators is applied to study the almost periodic oscillations for delay impulsive stochastic Nicholson’s blowflies timescale model on hybrid time scales.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 15:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐亭县| 兴化市| 礼泉县| 德保县| 辽阳县| 稻城县| 应用必备| 长岛县| 井冈山市| 红安县| 济阳县| 扎赉特旗| 宜城市| 章丘市| 邯郸市| 九寨沟县| 舒城县| 容城县| 岳普湖县| 商都县| 永平县| 宁国市| 石渠县| 丹凤县| 启东市| 株洲市| 拜城县| 肇东市| 惠东县| 康乐县| 七台河市| 云梦县| 于都县| 万年县| 乐安县| 扎鲁特旗| 平阳县| 临猗县| 安国市| 中卫市| 清苑县|