找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial and Geometric Group Theory; Dortmund and Ottawa- Oleg Bogopolski,Inna Bumagin,Enric Ventura Conference proceedings 2010 Birkh

[復(fù)制鏈接]
樓主: 威風(fēng)
41#
發(fā)表于 2025-3-28 14:55:10 | 只看該作者
42#
發(fā)表于 2025-3-28 18:59:26 | 只看該作者
Forum Dienstleistungsmanagemente .., (.., x.) ∈ . ∈ N, be a family of groups isomorphic to . and marked by .+2 elements. If the sequence (..). is convergent in the space of marked groups and G is the corresponding limit we say that . is an .-limit group. The paper is devoted to a description of .-limit groups.
43#
發(fā)表于 2025-3-29 00:32:32 | 只看該作者
https://doi.org/10.1007/978-3-7643-9911-5Group theory; algebraic geometry; combinatorics; geometric group theory; graphs
44#
發(fā)表于 2025-3-29 03:29:25 | 只看該作者
45#
發(fā)表于 2025-3-29 10:39:04 | 只看該作者
Forum DienstleistungsmanagementWe present a coarse convexity result for the dynamics of free group automorphisms: Given an automorphism . of a finitely generated free group ., we show that for all . ∈ . and 0 ≤ . ≤ ., the length of ..(.) is bounded above by a constant multiple of the sum of the lengths of x and ..(.), with the constant depending only on ..
46#
發(fā)表于 2025-3-29 13:24:19 | 只看該作者
47#
發(fā)表于 2025-3-29 18:06:09 | 只看該作者
Forum DienstleistungsmanagementIn the paper we consider homogeneous systems of linear equations and classify coordinate monoids over the additive monoid of natural numbers which are defined by such systems. Further, we apply our results to the wide class of commutative monoids.
48#
發(fā)表于 2025-3-29 20:39:29 | 只看該作者
49#
發(fā)表于 2025-3-30 00:26:09 | 只看該作者
50#
發(fā)表于 2025-3-30 05:23:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐安县| 治多县| 蓬安县| 新巴尔虎右旗| 丰宁| 平度市| 曲阳县| 怀安县| 察哈| 阿巴嘎旗| 聂荣县| 厦门市| 阳朔县| 湘潭市| 绥江县| 保定市| 兴和县| 咸宁市| 遵义市| 乌鲁木齐县| 霍林郭勒市| 来宾市| 民丰县| 曲周县| 如皋市| 许昌县| 阳江市| 湘乡市| 镇江市| 定远县| 溧水县| 连云港市| 新蔡县| 晋宁县| 平塘县| 兴仁县| 辛集市| 阜康市| 泾川县| 师宗县| 文昌市|