找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial and Geometric Group Theory; Dortmund and Ottawa- Oleg Bogopolski,Inna Bumagin,Enric Ventura Conference proceedings 2010 Birkh

[復(fù)制鏈接]
樓主: 威風(fēng)
41#
發(fā)表于 2025-3-28 14:55:10 | 只看該作者
42#
發(fā)表于 2025-3-28 18:59:26 | 只看該作者
Forum Dienstleistungsmanagemente .., (.., x.) ∈ . ∈ N, be a family of groups isomorphic to . and marked by .+2 elements. If the sequence (..). is convergent in the space of marked groups and G is the corresponding limit we say that . is an .-limit group. The paper is devoted to a description of .-limit groups.
43#
發(fā)表于 2025-3-29 00:32:32 | 只看該作者
https://doi.org/10.1007/978-3-7643-9911-5Group theory; algebraic geometry; combinatorics; geometric group theory; graphs
44#
發(fā)表于 2025-3-29 03:29:25 | 只看該作者
45#
發(fā)表于 2025-3-29 10:39:04 | 只看該作者
Forum DienstleistungsmanagementWe present a coarse convexity result for the dynamics of free group automorphisms: Given an automorphism . of a finitely generated free group ., we show that for all . ∈ . and 0 ≤ . ≤ ., the length of ..(.) is bounded above by a constant multiple of the sum of the lengths of x and ..(.), with the constant depending only on ..
46#
發(fā)表于 2025-3-29 13:24:19 | 只看該作者
47#
發(fā)表于 2025-3-29 18:06:09 | 只看該作者
Forum DienstleistungsmanagementIn the paper we consider homogeneous systems of linear equations and classify coordinate monoids over the additive monoid of natural numbers which are defined by such systems. Further, we apply our results to the wide class of commutative monoids.
48#
發(fā)表于 2025-3-29 20:39:29 | 只看該作者
49#
發(fā)表于 2025-3-30 00:26:09 | 只看該作者
50#
發(fā)表于 2025-3-30 05:23:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜丰县| 土默特左旗| 荣昌县| 万盛区| 长治县| 凤凰县| 策勒县| 吉林市| 阿拉尔市| 五家渠市| 洱源县| 桂平市| 徐州市| 成武县| 呼玛县| 临洮县| 黑水县| 义马市| 游戏| 双流县| 潍坊市| 长武县| 云梦县| 股票| 来安县| 丘北县| 横峰县| 闽侯县| 彭州市| 陇川县| 区。| 庆元县| 湖南省| 芦山县| 辛集市| 陈巴尔虎旗| 镇原县| 涿州市| 东乌珠穆沁旗| 宁乡县| 宣化县|